本文设计一种新型抗高海况浮式光伏系统,并通过物理模型试验和数值仿真相结合的方法,分析不同波高、周期和浪向下运动响应和系泊张力的影响。试验结果表明,不同浪向激励下,浮式光伏系统的运动响应差异显著;90°横浪和0°纵浪因波浪激励频率与系统固有周期匹配,导致特定自由度运动放大;45°斜浪则因波浪力分解削弱了自由度共振;数值仿真结果表明,极端海况下,六自由度运动幅值均在合理范围之内,垂荡运动对光伏发电有一定影响,可通过提升光伏支架高度进行优化;系泊张力最大值843.78 kN出现在0°纵浪时3号缆绳,安全系数为2.14,满足设计规范,可保障浮式光伏系统的安全运作;为浮式光伏系统工程应用的设计优化和安全性评估提供参考。
This study designed a novel floating photovoltaic system resistant to severe sea conditions and analyzed the effects of different wave heights, periods, and wave directions on the motion response and mooring tension using a combination of physical model tests and numerical simulations. Results show that the motion response of the floating PV system varies significantly under different wave directions. The 90° beam waves and 0° head waves amplify specific degrees of freedom due to the matching of wave excitation frequency with the system's natural period, while 45° oblique waves reduce the resonance of degrees of freedom through wave force decomposition. Numerical simulations indicate that under extreme sea conditions, the amplitudes of the six degrees of freedom are within reasonable limits. The heave motion has some impact on PV power generation, which can be optimized by increasing the height of the PV support structure. The maximum mooring tension of 843.78 kN occurs in the 0° head waves on mooring line No.3, with a safety factor of 2.14, meeting the design specifications and ensuring the safe operation of the floating floating photovoltaic system. This study provides a reference for the design optimization and safety assessment of floating PV systems for engineering applications.
2025,47(17): 137-145 收稿日期:2025-2-24
DOI:10.3404/j.issn.1672-7649.2025.17.022
分类号:P752
基金项目:国家杰出青年科学基金资助项目(52025112)
作者简介:黄敬民(2000-),男,硕士研究生,研究方向为浮式结构物水动力分析
参考文献:
[1] 张雨坤, 蓝艺超, 李大勇, 等. 自沉/吸贯式新型海洋光伏一体化结构在分层土中沉贯安装模型试验研究[J/OL]. 太阳能学报, 1-10[2025-02-20].https://doi.org/10.19912/j.0254-0096.tynxb.2023-2060.
[2] 练继建, 陈艳佳, 王孝群, 等. 海上光伏外围防护-固定式透空堤结构型式研究进展[J]. 太阳能学报, 2024, 45(8): 332-341.
[3] 昝英飞, 李忠明, 陈永訢, 等. 海洋结构物吊装入水动力学特性研究综述[J]. 船舶工程, 2024, 46(9): 135-145+159.
[4] 耿宝磊, 唐旭, 金瑞佳. 海上浮式光伏结构及其水动力问题研究展望[J]. 海洋工程, 2024, 42(3): 190-208.
[5] XU P, WELLENS P R. Fully nonlinear hydroelastic modeling and analytic solution of large-scale floating photovoltaics in waves[J]. Journal of Fluids and Structures, 2022, 109: 103446.
[6] JIANG Z, DAI J, SAETTONE S, et al. Design and model test of a soft-connected lattice-structured floating solar photovoltaic concept for harsh offshore conditions[J]. Marine Structures, 2023, 90: 103426.
[7] YAN C, SHI W, HAN X, et al. Assessing the dynamic behavior of multiconnected offshore floating photovoltaic systems under combined wave-wind loads: A comprehensive numerical analysis[J]. Sustainable Horizons, 2023, 8: 100072.
[8] ZHANG F, SHI W, WANG Q. A Study on the Hydrodynamics and Coupling Effects of the Multibody Floating Photovoltaic (FPV) Concept[J]. Journal of Marine Science and Engineering, 2023, 11(8): 1491.
[9] SONG J, KIM J, LEE J, et al. Dynamic response of multiconnected floating solar panel systems with vertical cylinders[J]. Journal of Marine Science and Engineering, 2022, 10(2): 189.
[10] 夏国龙, 方海, 韩娟, 等. 波浪荷载作用下水上太阳能复合材料浮体系统受力分析[J]. 复合材料科学与工程, 2022(3): 51-55+65.
[11] 岳云峰, 彭欣然, 王洪庆, 等. 海上漂浮光伏发电技术及其融合发展展望[J]. 南方能源建设, 2024, 11(2): 42-50.
[12] 杨易凡, 彭涛, 王磊, 等. 半潜平台浮托安装水动力响应特性数值模拟与模型试验研究[J]. 舰船科学技术, 2023, 45(22): 97-104.
YANG Y F, PENG T, WANG L,et al. Experimental and numerical investigation of the hydrodynamic response characteristics of the semi-submersible platform in float-over installation[J]. Ship Science and Technology, 2023, 45(22): 97-104.
[13] 雷震, 吕海宁. 大型邮轮耐波性能数值与试验研究[J]. 舰船科学技术, 2022, 44(1): 46-51.
[14] 黄竹, 王瑜, 李思琦, 等. 基于水动力运动响应分析的圆筒型FPSO优化设计[J]. 舰船科学技术, 2024, 46(22): 118-123.
HUANG Z, WANG Y, LI S Q, et al. Cylindrical FPSO research based on motion response analysis[J]. Ship Science and Technology, 2024, 46(22): 118-123.
[15] 黄检, 易丛, 白雪平, 等. 深远海大兆瓦级半潜式风机基础运动特性数值模拟及试验研究[J]. 中国海上油气, 2024, 36(5): 206-217.