将浮式风机平台与波浪能发电装置结合具有广阔的应用前景,本文以OC3-Hywind Spar式风机平台为研究对象,基于考虑粘性修正的线性势流软件AQWA和风力机主流仿真软件FAST,建立浮式风浪能集成系统的气动-水动耦合分析模型,研究在湍流风作用下不同形式浮子对平台运动的影响规律。结果表明,有了波浪能浮子的加入,能够有效抑制平台的纵荡和纵摇运动,但也略微增加了平台垂荡方向的运动幅值;对波浪能浮子尺寸进行优化分析,表明吃水小、外径大的波浪能浮子顺浪性更好,在典型工作海况下,对提高集成系统平台运动稳定性更具有优势。
The combination of floating wind turbine platforms with wave energy generation devices has broad application prospects. This paper takes the OC3-Hywind Spar wind turbine platform as the research object, and based on the linear potential flow software AQWA considering viscosity correction and the mainstream wind turbine simulation software FAST, establishes an aerodynamic-hydrodynamic coupling analysis model for the floating wind-wave energy integration system, and studies the influence of different forms of floats on the platform motion under turbulent wind. The results indicate that the addition of wave energy floats can effectively suppress the surge and pitch motion of the platform, but also increase the amplitude of the platform's heave direction motion; optimization analysis of the size of wave energy floats shows that wave energy floats with smaller draft and larger outer diameter have better wave following performance, and are more advantageous in improving platform motion stability under typical working sea conditions.
2025,47(17): 146-151 收稿日期:2024-11-12
DOI:10.3404/j.issn.1672-7649.2025.17.023
分类号:P753
作者简介:陆骏豪(1996-),男,硕士研究生,研究方向为海洋结构物水动力性能分析
参考文献:
[1] MULIAWAN M J, KARIMIRAD M, MOAN T. STC (spar-torus combination) a combined spar-type floating wind turbine and large point absorber floating wave energy converter-promising and challenging[C]//International conference on ocean, offshore and arctic engineering (OMAE), 2012.
[2] ZHOU B Z, ZHENG Z, HONG M W. Dynamic and power generation features of a wind-wave hybrid system consisting of a spar-type wind turbine and an annular wave energy converter in irregular waves[J]. China Ocean Engineering, 2024, 37(6): 923-933.
[3] 丁勤卫. 风波耦合作用下漂浮式风力机平台动态响应及稳定性控制研究[D]. 上海: 上海理工大学, 2019.
[4] 程萍. 浮式风机气动-水动耦合复杂流场数值模拟[D]. 上海: 上海交通大学, 2019.
[5] SI Y L, CHEN Z, ZENG W J, et al. The influence of power-take-off control on the dynamic response and power output of combined semi-submersible floating wind turbine and point-absorber wave energy converters[J]. Ocean Engineering, 2021, 227: 108835.
[6] JONKMAN J. Definition of the floating system for phase 4 of OC3[R]. National Renewable Energy Lab. (NREL), 2010.
[7] MULIAWAN M J, KARIMIRAD M, MOAN T. Dynamic response and power performance of a combined Spar-type floating wind turbine and coaxial floating wave energy converter[J]. Renewable Energy, 2013, 50: 47-57.
[8] ANSYS I. Ansys AQWA user’s manual[M]. Release 2021 R2, 2011.
[9] YANG Y, BASHIR M, MICHAILIDES C, et al. Development and application of an aero-hydro-servo-elastic coupling framework for analysis of floating offshore wind turbines[J]. Renewable Energy, 2020, 161: 606-625.
[10] JONKMAN B J, BUHL M L. TurbSim User's Guide[R]. 2005.
[11] 白旭, 杨翔宇, 栗铭鑫. 偏航工况对海上浮式风力机输出功率及叶片载荷影响的研究[J]. 中国造船, 2022, 63(1): 140-152.
[12] 高琅. 波浪能装置与浮式风机平台集成系统耦合动力性能研究[D]. 广州: 华南理工大学, 2022.