KK型节点是海上风电安装平台桁架式桩腿的主要节点之一,其疲劳寿命关乎整个平台安全。为研究表面裂纹对KK型节点疲劳寿命的影响,基于有限元软件Abaqus的扩展有限元方法(XFEM),对3种不同裂纹初始位置KK型节点的裂纹扩展过程进行数值模拟,分别得到了裂纹扩展总长度、单边裂纹长度、深度与循环次数之间的关系曲线,以及裂纹扩展路径。计算结果表明,初始裂纹在斜撑位置时,KK型节点的疲劳寿命最短;处于弦管相贯线附近的初始裂纹,其扩展路径为先沿着相贯线扩展,随后局部应力大的裂纹一端扩展至相贯线处,应力小的裂纹一端渐渐偏离相贯线;处于弦管位置的初始裂纹则在初始裂纹平面内扩展。
The KK-type node is one of the main nodes of the truss pile leg of installation platform for the offshore wind turbine, and its fatigue life is related to the safety of the whole platform. In order to study the influence of surface cracks to fatigue life of KK-type nodes, based on the extended finite element method (XFEM) of ABAQUS software, the crack propagation process of KK-type nodes with three different crack initial positions is numerically simulated, and the relationship curves about the total length of crack propagation, one side of crack length, the depth with the number of cycles as well as the crack propagation path are obtained respectively. The results show that the fatigue life of the KK-type node with initial crack at the diagonal brace position is the shortest; the initial crack near the coherent line of the chord tube grows along the coherent line first, and then the crack end with high local stress grows to the coherent line, while the crack end with low stress gradually deviates from the coherent line; the initial crack at the position of the chord tube away from brace grows in the initial crack plane.
2025,47(17): 158-162 收稿日期:2024-9-2
DOI:10.3404/j.issn.1672-7649.2025.17.025
分类号:U661.42
基金项目:国家自然科学基金面上项目(52171312);2023江苏省工业和信息产业转型升级项目(苏财工贸〔2023〕60号);水路交通控制全国重点实验室开放课题资助项目(QZ2022-Y012)
作者简介:郑新招(1999-),女,硕士研究生,研究方向为船舶与海洋工程结构性能
参考文献:
[1] 方磊, 高崧涛, 王士伦. 基于疲劳强度的船舶甲板支撑结构设计[J]. 舰船科学技术, 2022, 44(6): 50-53.
FANG L, GAO S T, WANG S L, Design of ship deck support structure based on fatigue strength[J]. Ship Science and Technology, 2022, 44(6): 50-53.
[2] 贾献林, 吕聪, 李越, 等. 基于有限元法的平面K/Y型管节点SCF特性分析[J]. 中国海洋平台, 2020, 35(2): 30-33.
[3] 刘刚, 郑云龙, 赵德有, 等. BINGO9000半潜式钻井平台疲劳强度分析[J]. 船舶力学, 2002(2): 54-63.
[4] YETER B, GARBATOV Y, GUEDES SOARES C. Evaluation of fatigue damage model predictions for fixed offshore wind turbine support structures[J]. International Journal of Fatigue, 2016, 87: 71-80.
[5] 陶京. 基于S-N曲线和断裂力学的自升式平台桩腿疲劳寿命研究[D]. 大庆: 东北石油大学, 2021.
[6] 甘进, 乐京霞, 吴卫国, 等. 海洋平台KK型管节点的疲劳性能试验研究[J]. 武汉理工大学学报(交通科学与工程版), 2011, 35(5): 980-983.
[7] 李亚政, 王峥, 孙亚非, 等. 基于损伤力学和XFEM的舰船蒸汽轮机叶片裂纹扩展研究[J]. 船舶力学, 2018, 22(4): 490-498.
[8] 纪东东, 张继旺, 徐俊生, 等. 基于扩展有限元法的含损伤深滚压车轴剩余寿命预测[J]. 中国科学: 技术科学, 2023, 53(3): 417-429.
[9] 胡启明, 杨佳霖. 基于扩展有限元法梁裂纹扩展有限元分析[J]. 山西建筑, 2024, 50(5): 55-58.
[10] 向泽, 刘力, 祝志文. 基于扩展有限元法的钢桥面横隔板弧形切口疲劳裂纹扩展特性研究[J]. 桥梁建设, 2024, 54(3): 46-53.
[11] BELYTSCHKO T, et al. Elastic crack growth in finite elements with minimal remeshing[J]. International Journal For Numerical Methods In Engineering, 1999, 45(1): 601-620.
[12] 苏玉昆, 马涛, 赵晓鑫, 等. 基于有限元技术的疲劳裂纹扩展方法研究进展[J]. 力学进展, 2024, 54(2): 308-343.
[13] 祝志远, 黄小平, 余宏淦, 等. 基于已有数据和粒子滤波的Paris参数估计和剩余寿命预测[J]. 中国造船, 2021, 62(2): 33-45.
[14] JIE Z Y, WANG K N, LIANG S D, Residual stress influence on fatigue crack propagation of CFRP strengthened welded joints [J]. Journal of Constructional Steel Research, 2022, 196(1): 107-119.
[15] 罗霞飞, 石健, 邵永波, 等. 海水腐蚀环境下高强度钢腐蚀疲劳裂纹扩展行为研究[J]. 中国海上油气, 2023, 35(4): 181-188.
[16] 沈言, 罗广恩, 蒋小伟, 等. 考虑焊接残余应力释放的结构疲劳寿命分析方法研究[J]. 船舶力学, 2021, 25(7): 935-945.
[17] LARSEN M L, ARORA V, LÜTZEN M, et al, Fatigue life estimation of the weld joint in K-node of the offshore jacket structure using stochastic finite element analysis[J]. Marine Structures, 2021, 78: 103020.
[18] 梁恩强, 刘昆, 包杰, 等. 板-梁耦合技术在自升式海洋平台碰撞分析中的应用研究[J]. 中国海洋平台, 2015, 30(5): 28-34.