桁架式桩腿设计广泛应用于海洋石油钻探和风电安装自升式平台设计中,许用桩腿RPD值对平台结构可靠性和安全性非常重要,因此研究桁架式桩腿齿条高度相位差(Rack Phase Difference, RPD)计算方法具有重要意义。本文聚焦于桁架式桩腿RPD计算方法和影响因素,研究桁架式桩腿受力机制和RPD计算原理,建立有限元分析模型直接计算桩腿RPD值。研究结果表明,不同形式桁架式桩腿具有不同刚度特性,桁架式桩腿刚度越小,桩腿RPD值越大;采用单桩腿RPD分析模型,在升降系统位置加载迭代弯矩方式,更能真实反映固装架上导向处桩腿RPD数值;桩腿极限滑移距离和桩腿RPD值呈现60°相位变化,其最大值和最小值按60°角交替出现,并且极值基本一致;桩腿垂向支持力对桩腿RPD值影响较小,桁架式桩腿形式和构件尺寸对桩腿RPD值影响大,相对于调整弦管尺寸,桩腿RPD值对桩腿节距和斜撑尺寸更敏感。
The truss-type pile leg design is widely used in the design of offshore oil drilling and wind power installation jack-up platforms, the pile leg allowable RPD value is very important for the reliability and safety of the platform structures, therefore, the pile leg RPD calculation method research is of great significance. This paper main focus on the pile leg RPD value calculation method and various influencing factors, and study the force mechanism of the truss-type pile legs and the calculation principle of the pile leg RPD, building the element analysis model to directly calculate the pile leg RPD value. The research results show that different forms truss-type pile legs have different stiffness characteristics, the smaller stiffness of truss-type pile legs, the greater the pile leg RPD value; Using a single pile leg RPD analysis model and applying iterative bending moments to the lifting system, can more truly reflects the pile leg RPD value at the upper guide; The ultimate sliding distance of pile leg and RPD values change in a 60° phase, the maximum and minimum values appear alternately every 60 degrees, and the extreme values are basically same; The vertical reaction force of pile leg has little influence on the pile leg RPD value, the form and component size of truss-truss pile leg have great influence on the pile leg RPD value, compared with the size of pile leg chord tubes, the RPD values of pile leg is more sensitive to the pile leg spacing and the brace member size.
2025,47(17): 163-169 收稿日期:2024-12-11
DOI:10.3404/j.issn.1672-7649.2025.17.026
分类号:U674
作者简介:高宝坤(1983-),男,硕士,工程师,研究方向为船舶结构设计
参考文献:
[1] 龚军, 徐立祥, 李绪党. 自升式平台作业升降RPD测量及应用分析[J]. 科技视界, 2016, 4(11): 117-120.
[2] 冼敏元, 高杰, 段梦兰. 桩腿滑移对自升式平台结构及RPD影响[J]. 船海工程, 2019, 10(5): 40-43.
[3] 陈卫, 严明. 桁架桩腿自升式平台齿条相位差分析研究[J]. 海洋工程装备与技术研究, 2024(2): 80-86.
[4] 高畅. 自升式平台压载作业桩腿侧向滑移的极限RPD[J]. 中国海洋平台, 2019(8): 72-78.
[5] 朱亚洲, 孙承猛, 林海花. 自升式平台桁架式桩腿结构选型方法[J]. 哈尔滨工业大学学报, 2016, 10(10): 111-117.
[6] 中国船级社. 海上移动平台入级规范[S]. 北京: 人民交通出版社股份有限公司, 2023.
[7] RR289-Guidelines for jack-up rigs with particular reference to foundation integrity, UK HSE.
[8] DNVGL-RP-C104 Self-elevating units.
[9] Society of Naval Architects and Marine Engineers (SNAME) Technical & Research Bulletin 5-5A. Guidelines for Site Specific Assessment of Mobile Jack-up Units Society of Naval Architects and Marine Engineers, 2002.
[10] API. Recommended practice for planning, designing and constructing fixed offshore platforms-working stress design[S]. 2002.