为明确附属构件对桩腿冰荷载的影响,本文通过海冰加载试验开展了,带2根附属构件不同遮蔽情况下的冰力变化规律研究。试验结果表明,带2根附属构件对孤立桩腿极值冰荷载影响系数在0.77~1.4之间;当附属构件在桩腿的迎冰面时,附属构件具有破冰作用,极值冰力较孤立桩腿减小了23%;当冰板穿过附属构件与桩腿之间时,桩腿与附属构件相互干扰,使冰板的局部破坏特征发生改变,影响结构的极值冰力;相比于工程设计中通常使用的代数相加和等效直径计算方法,试验测量得到的带附属构件桩腿实际极值冰力折减系数在0.53~0.9之间。研究成果可以为带附属构件平台桩腿的冰荷载评估提供理论参考。
To clarify the impact of accessory components on ice loads on the legs, ice loading experiments were conducted to investigate the variations in ice forces under different shadowing conditions of the accessory components. The experimental results reveal that the influence coefficient of two accessory components on the extreme ice loads of isolated legs ranges between 0.77~1.4. When accessory components are positioned on the ice-facing side of the legs, they exhibit ice-breaking properties, reducing extreme ice forces by 23% compared to isolated legs. When ice plates pass between the accessory components and the legs, mutual interference alters the local failure characteristics of the ice plates, thereby affecting the extreme ice forces on the structure. Compared to the algebraic summation and equivalent diameter calculation methods commonly used in engineering design, the experimentally measured reduction coefficients for actual extreme ice forces on legs with accessory components range between 0.53~0.9. The research results can provide reference for the evaluation of ice load on platform pile legs with attached components.
2025,47(17): 170-176 收稿日期:2024-12-13
DOI:10.3404/j.issn.1672-7649.2025.17.027
分类号:U663.7
基金项目:国家自然科学基金资助项目(52071055);中国海洋石油有限公司科技课题(KJZH-2023-2402)
作者简介:李伟(1988-),男,博士,高级工程师,研究方向为海洋油气与海上新能源结构设计
参考文献:
[1] TIMCO G W. Laboratory observations of macroscopic failure modes in freshwater ice[C]//Cold Regions Engineering Proceedings 6th International Cold Regions Engineering Conference, West Lebanon, N.H., U.S.A., 1991.
[2] HENDRIKSE H. Ice-induced vibrations of vertically sided offshore structures[D]. Delft: Delft University of Technology, 2017.
[3] ASHBY M F, PALMER A C, THOULESS M, et al. Non-simultaneous failure and ice loads on arctic structures[C]//Proceedings of Offshore Technology Conference, Houston, Texas, 1986.
[4] 付仰华, 王国军, 黄亚婷, 等. 海冰与直立结构相互作用的破坏模式研究[J]. 海洋工程, 2023, 41(3): 27-36.
FU Y H, WANG G J, HUANG Y T, et al. Study on failure modes of interaction between sea ice and vertical structures[J]. The Ocean Engineering, 2023, 41(3): 27-36.
[5] 王国军, 彭鑫, 资林钦, 等. 寒区宽大结构局部冰荷载特征研究[J]. 船舶力学, 2021, 25(8): 1073-1085.
WANG G J, PENG X, ZI L Q, et al. Study on local ice load of wide structures in cold regions[J]. Journal of Ship Mechanics, 2021, 25(8): 1073-1085.
[6] 李伟, 尹汉军, 付殿福, 等. 中国海洋平台结构抗冰设计关键问题及研究建议[J]. 中国海上油气, 2024, 36(4): 199-211.
LI W, YIN H J, FU D F, et al. Key issues and suggestions for ice-resistant design of offshore platform structures in China[J]. China Offshore Oil and Gas, 2024, 36(4): 199-211.
[7] 余朝歌, 田于逵, 刚旭皓, 等. 层冰作用下直立圆柱结构冰载荷研究[J]. 船舶力学, 2024, 28(2): 169-178.
YU C G, TIAN Y K, GANG X H, et al. Ice loading on vertical cylindrical structures under the action of level ice[J]. Journal of Ship Mechanics, 2024, 28(2): 169-178.
[8] CHEN Z A, HUANG Y T, ZHANG D Y. Machine learning assisted in forecasting the ice-induced vibration for jacket platforms[J]. Applied Ocean Research, 2023, 141: 103778.
[9] JANG H K, KIM M. Dynamic ice force estimation on a conical structure by discrete element method[J]. International Journal of Naval Architecture and Ocean Engineering, 2021, 13, 136-146.
[10] SINSABVARODOM C, CHAI W, LEIRA B J, et al. Uncertainty assessments of structural loading due to first year ice based on the ISO standard by using Monte-Carlo simulation[J]. Ocean Engineering, 2020, 198: 106935.
[11] SHI Q, HUANG Y, SONG A, et al. Non-simultaneous failure of ice in front of multi-leg structures[J]. China Ocean Engineering, 2002, 16(2): 183-192.
[12] KARULIN E, KARULINA M. Peculiarities of multi-legged platform operation in ice condition[C]//Proceeding of the ASME 33rd International Conference on Ocean, Offshore and Arctic Engineering. San Francisco, California, USA, 2014: OMAE2014-23203.
[13] KATO K, SODHI D S. Ice action on two cylindrical structures[J]. Journal of Energy Resources Technology, 1984, 106: 107-112.
[14] TIMCO G W. Ice Forces on multi-legged structures[C]//In Proceedings of the 8th International Symposium on Ice (IAHR). Vol. 2. Jowa City, USA, 1986.
[15] KATO K. Total ice force on multi legged structures[C]//In Proceedings of the 10th International Symposium on Ice (IAHR). Vol. 2. Espoo, Finland, 1990.
[16] TAKEUCHI T, OKAMOTO S, ONO T, et al. Total ice forces on multi-legged structures[J]. In Proceedings of Civil Engineering in the Ocean, 1992, 8: 129-134.
[17] 宋安, 王瓴羽. 渤海导管架平台桩腿及其隔水导管群上的冰力[J]. 天津大学学报, 1995, 28(3): 390-397.
SONG A, WANG L Y. The ice forces acting upon the columns and conductor cluster of a Bohai well-protecting jacket platform[J]. Journal of Tianjin University, 1995, 28(3): 390-397.
[18] TIMCO G W. Model tests of dynamic ice loading on the Chinese JZ-20-2 jacket platform[J]. Canadian Journal of Civil Engineering, 1992, 19(5): 819-832.
[19] Q/HSn 3000-2002. 中国海海冰条件及应用规定 [S]. 北京: 中国海洋石油总公司, 2002.
[20] 史庆增, 黄焱, 宋安, 等. 海上多腿结构前冰的非同时破坏系数及其概率分布[J]. 海洋工程, 2003(3): 34-39.
SHI Q Z, HUANG Y, SONG A, et al. Non-simultaneous failure of ice before multi-leg structures and its probability distribution[J]. The Ocean Engineering, 2003(3): 34-39.
[21] 王帅霖, 狄少丞, 季顺迎. 多桩锥体海洋平台结构冰荷载遮蔽效应离散元分析[J]. 海洋工程, 2016, 34(2): 1-9.
WANG S L, DI S C, JI S Y. Discrete element analysis of shadowing effect of ice load on multi-leg conical offshore platform structure[J]. The Ocean Engineering, 2016, 34(2): 1-9.
[22] 李伟, 高扬, 孙诗语, 等. 基于模型试验的八桩腿导管架平台冰力掩蔽效应研究[J]. 中国造船, 2024, 65(5): 37-52.
[23] 张大勇, 岳前进, 许宁, 等. 冰激自升式钻井平台的动力响应分析[J]. 船舶力学, 2015, 19(8): 966-974.
ZHANG D Y, YUE Q J, XU N, et al. Dynamic response analysis of jack-up drilling platforms induced by ice vibrations[J]. Journal of Ship Mechanics, 2015, 19(8): 966-974.
[24] ZHANG B, DONG R, LI W, et al. Numerical simulation of extreme ice loads on complex pile legs of offshore substation structures[J]. Journal of Marine Science and Engineering, 2024, 12(5): 838.
[25] MÄÄTTÄNEN. Laboratory tests for dynamic ice structure interaction[C]//The International Conference on Port and Ocean Engineering under Arctic Conditions (POAC’ 79). Vol. II, Trondheim, Norway, 1979.