为了准确预报真实加筋板结构的极限强度,从而为船体加筋板结构极限强度评估提供支撑,本文利用非线性有限元法,采用实体-壳板组合模型对筋/板焊趾进行模拟,初步对比分析了焊趾对加筋板结构极限承载能力的影响,并以扁钢加筋板模型为对象开展了焊接过程模拟,分析了焊接缺陷对加筋板结构极限强度的影响,可为考虑工艺影响的加筋板结构极限强度预报提供手段。计算结果表明,焊趾主要影响局部位置的应力分布,对整体极限状态下的应力分布影响较小;由于焊趾的尺寸较小,难以改变加筋板的整体失效模式,对加筋板的极限承载特性影响有限;焊趾对加筋板的平均应力-平均应变曲线变化不大,对后屈曲状态稍有影响;焊接缺陷使得扁钢加筋板模型极限强度下降7.64%。
In order to accurately predict the ultimate strength of the real stiffened plate structure, it provides support for the ultimate strength evaluation of the hull stiffened plate structure. Nonlinear finite element method was used to simulate the welded toe of reinforcement/plate with a solid shell and plate combination model. The influence of the welded toe on the ultimate bearing capacity of the reinforced plate structure was preliminarily compared and analyzed. The welding process was simulated with the flat steel reinforced plate model as the object, and the influence of welding defects on the ultimate strength of the reinforced plate structure was analyzed. It can provide a method for predicting the ultimate strength of stiffened plate structure considering the influence of technology. The results show that the welding toe mainly affects the stress distribution in the local position, but has little effect on the stress distribution in the whole limit state. Due to the small size of the weld toe, it is difficult to change the overall failure mode of the stiffened plate, which has a limited impact on the ultimate load-carrying characteristics of the stiffened plate. The average stress-average strain curve of the welded toe on the stiffened plate has little change, and has a little influence on the post-buckling state. The welding defect reduces the ultimate strength of the flat steel stiffened plate model by 7.64%.
2025,47(18): 18-25 收稿日期:2024-10-11
DOI:10.3404/j.issn.1672-7649.2025.18.004
分类号:U661.4
作者简介:李政杰(1986 – ),男,硕士,高级工程师,研究方向为船体结构强度与安全性评估
参考文献:
[1] 杜言, 俞健, 吴卫国, 等. 焊接工艺参数对船舶加筋板结构的声振特性影响研究[J]. 中国舰船研究, 2023, 18(6): 216-225.
[2] 李阿虎, 魏国前, 何文波. 考虑焊趾形貌的T形焊接接头三点弯疲劳试验[J]. 实验室研究与探索, 2023, 42(3): 16-19+31.
[3] 储玲玉, 刘觉非, 苏林, 等. 含凹坑缺陷管道环焊缝应力有限元分析[J]. 电焊机, 2021, 51(4): 8-13.
[4] 韩云. 焊趾工艺优化对压力管道对接接头残余应力的影响[J]. 电焊机, 2024, 54(6): 131-135.
[5] 侯国清, 马蓉, 覃剑, 等. 焊接工艺参数对角焊缝残余应力的影响[J]. 焊接技术, 2016, 45(3): 37-39.
[6] 凌立鹏, 唐亮. 钢桥面板顶板-U肋焊接接头热点应力的精细有限元分析[J]. 公路交通科技, 2018, 35(4): 58-66.
[7] 魏国前, 罗玉兵, 黄发超, 等. 考虑焊趾形貌的十字焊接接头疲劳评定研究[J]. 机械强度, 2018, 40(2): 418-423.
[8] PERI M, STAMENKOVI D, MILKOVI V. Comparison of residual stresses in butt-welded plates using software packages abaqus and ansys[J]. Scientific Technical Review, 2010, 60(3-4): 22-26.
[9] PERI M, SELE K, TONKOVI Z, et al. Numerical simulation of welding distortions in large structures with a simplified engineering approach[J]. Open Physics, 2019, 17(1): 719-730.
[10] PERIC M, TONKOVIC Z, RODIC A, et al. Numerical analysis and experimental investigation of welding residual stresses and distortions in a T-joint fillet weld[J]. Materials & Design, 2014, 5(3): 1052-1063.
[11] PAIK J K, LEE D H, NOH S H, et al. Full-scale collapse testing of a steel stiffened plate structure under cyclic axial-compressive loading[J]. Structures, 2020, 10(2): 996-1009.
[12] RINGSBERG J W, DARIE I, NAHSHON K, et al. The ISSC 2022 committee III. 1-Ultimate strength benchmark study on the ultimate limit state analysis of a stiffened plate structure subjected to uniaxial compressive loads[J]. Marine Structures, 2021, 7(3): 103026.
[13] CCS. 《钢质海船入级规范》[R]. 2024.
[14] RYU H, KANG S, LEE K. Numerical analysis and experiments of butt welding deformations for panel block assembly[J]. Applied Sciences, 2020, 10(5): 1669.