对舰船设备时域抗冲击能力分析依赖大量试验数据的问题提出一种解决方法。结合遗传算法与差分进化算法形成遗传-差分混合算法,利用该算法将阻尼正弦函数合成为水下爆炸产生的时域冲击加速度,使时域重构冲击响应谱值逼近爆炸冲击响应谱真实值。以侧推盖板为例,将合成的时域冲击加速度作为输入,用 Ansys 分析其爆炸时应力应变变化。结果表明,遗传-差分混合算法优化结果较单独遗传算法有显著提升,其爆炸冲击响应谱各频点数值超过 90% 处于(–1.5/+1.5)dB 容差范围内,与目标谱匹配度更高。在实例分析中,该方法能更精准反映侧推盖板爆炸时应力应变的变化情况,有助于后续结构优化设计。
A solution is proposed to address the issue that the analysis of the time-domain shock resistance capacity of shipboard equipment heavily relies on a large amount of test data. A genetic-differential hybrid algorithm is formed by combining the genetic algorithm with the differential evolution algorithm. Utilizing this algorithm, the damped sine function is synthesized into the time-domain shock acceleration generated by underwater explosions, making the reconstructed time-domain shock response spectrum values approximate the true values of the explosion shock response spectrum. Taking the side thruster cover as an example, the synthesized time-domain shock acceleration is used as the input, and the changes in stress and strain during the explosion are analyzed using Ansys. The results show that the optimization results of the genetic-differential hybrid algorithm are significantly improved compared with those of the single genetic algorithm. The values at each frequency point of the explosion shock response spectrum are more than 90% within the tolerance range of (–1.5/+1.5) dB, demonstrating a higher degree of matching with the target spectrum. In the case study, this method can more accurately reflect the changes in stress and strain of the side thruster cover during the explosion, which is conducive to the subsequent structural optimization design.
2025,47(18): 26-32 收稿日期:2024-12-4
DOI:10.3404/j.issn.1672-7649.2025.18.005
分类号:U662.2
基金项目:国家重点研发计划课题(2018YFF0214705)
作者简介:宋庭新(1972 – ),男,教授,博士,研究方向为装备智能运维与健康管理
参考文献:
[1] 侯世红. 基于DDAM方法的某舰载火控雷达抗冲击仿真计算[J]. 机械设计, 2020, 37(7): 87-92.
HOU S H. Simulation and calculation of shock resistance of a Ship-borne Fire Control Radar based on DDAM[J]. Journal of Machine Design, 2020, 37(7): 87-92.
[2] 李彦军, 陈旭, 曾庆鹏, 等. 舰船动力设备抗冲击评估方法综述[J]. 中国舰船研究, 2023: 1-16.
LI Y J, CHEN X, ZENG Q P, et al. Review on the evaluation methods of shock resistance for ship power equipment[J]. Chinese Journal of Ship Research, 2023: 1-16.
[3] 张强, 何朝勋, 杨建军. 应用Ansys的DDAM方法进行舰船设备的抗冲击计算[J]. 舰船科学技术, 2021, 33(12): 42-45, 50.
ZHANG Q, HE C X, YANG J J. The shock resistance research of warship equipment with DDAM using Ansys[J]. Ship Science And Technology, 2021, 33(12): 42-45, 50.
[4] 张晓阳, 刘建湖, 潘建强, 等. 各主要海军国家设备抗冲击标准之评述[J]. 船舶力学, 2011, 15(11): 1322-1334.
ZHANG X Y, LIU J H, PAN J Q, et al. Review on anti-shock criteria for equipments in some primary navy countries[J]. Journal of Ship Mechanics, 2011, 15(11): 1322-1334.
[5] 杜志鹏, 汪玉, 杨洋, 等. 舰艇水下爆炸冲击信号拟合及应用[J]. 振动与冲击, 2010, 29(3): 182-184,213.
DU Z P, WANG Y, YANG Y, et al. Fitting and application of underwater explosion shock signals of warships[J]. Journal of Vibration and Shock, 2010, 29(3): 182-184,213.
[6] HYUNWOO K, CHOUNG J. Shock-resistance responses of frigate equipments by underwater explosion[J]. Journal of Ocean Engineering and Technology, 2022, 36(3): 161-167.
[7] 马道远, 庄方方, 徐振亮. 基于遗传算法的冲击响应谱时域合成方法[J]. 强度与环境, 2015, 42(5): 49-53.
MA D Y, ZHUANG F F, XU Z L. Time-domain synthesis method for shock response spectrum based on genetic algorithm[J]. Structure & Environment Engineering, 2015, 42(5): 49-53.
[8] 孙文娟, 陈海波, 黄颖青. 基于自适应遗传算法的爆炸冲击响应谱时域重构优化方法[J]. 高压物理学报, 2019, 33(5): 67-76.
SUN W J, CHEN H B, HUANG Y Q. Optimization method for time-domain reconstruction of explosion shock response spectrum based on adaptive genetic algorithm[J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 67-76.
[9] 周马俊, 薛斌, 薛程, 等. 基于遗传算法改进的DDAM风机隔振装置抗冲击仿真实验[J]. 舰船科学技术, 2020, 42(1): 146-150.
ZHOU M J, XUE B, XUE C, et al. Simulation experiment of anti-impact of vibration isolation device of DDAM fan based on genetic algorithm[J]. Ship Science and Technology, 2020, 42(1): 146-150.
[10] LEE J R, CHIA C C, KONG C W. Review of pyroshock wave measurement and simulation for space systems[J]. Measurement, 2012, 45(4): 631-642.
[11] 姜涛, 王伟力, 黄雪峰, 等. 舰艇抗冲击设计中正负三角波冲击谱分析与应用[J]. 海军航空工程学院学报, 2010, 25(2): 145-148.
JIANG T, WANG W L, HUANG X F, et al. Analysis and application of positive and negative triangular wave shock spectra in warship anti-shock design[J]. Journal of Naval Aeronautical and Astronautical University, 2010, 25(2): 145-148.
[12] 陈小慧, 闫兵, 李华超. 冲击响应谱时域合成算法研究[J]. 包装工程, 2007(2): 23-26.
CHEN X H, YAN B, LI H C. Re se arch on the time-history wave form synthe sis of shock re sponse spe ctrum[J]. Packaging Engineering, 2007(2): 23-26.
[13] 尹群. 水面舰船设备冲击环境与结构抗冲击性能研究[D]. 南京: 南京航空航天大学, 2006.
[14] 刘学文, 闫洪峰, 石明堃, 等. 飞机牵引车抗冲击分析与试验[J]. 起重运输机械, 2023(23): 24-29.
LIU X W, YAN H F, SHI M K, et al. Anti-impact analysis and test of aircraft tractor[J]. Hoisting and Conveying Machinery, 2023(23): 24-29.