针对无人水面艇协同定位系统由于距离量测噪声未知而引起协同定位精度下降的问题,首先分析无人水面艇协同定位系统运动学模型与基于水声测距的量测模型,然后设计基于变分贝叶斯卡尔曼滤波的自适应协同定位算法,利用迭代方式对从艇的位置进行估计。为了验证本文所提算法的有效性,通过实船试验的离线数据对算法进行了对比验证,结果表明所提算法可以有效降低定位误差,均方根误差与UKF、HIDDF、AKF、FGMC算法相比分别减少了58%、14%、6%、15%,显著提高了无人水面艇的定位能力。
In response to the problem of decreased collaborative positioning accuracy caused by unknown distance measurement noise in unmanned surface vessel collaborative positioning systems, the kinematic model of the unmanned surface vessel collaborative positioning system and the measurement model based on underwater acoustic ranging were first analyzed. Then, an adaptive collaborative positioning algorithm based on variational Bayesian Kalman filtering was designed, and the position of the slave vessel was estimated iteratively. In order to verify the effectiveness of the algorithm proposed in this article, the algorithm was compared and validated through offline data from real ship experiments. The results showed that the proposed algorithm can effectively reduce positioning errors, with root mean square errors reduced by 58%, 14%, 6% and 15% compared to UKF, HIDDF, AKF, and FGMC algorithms, respectively, significantly improving the positioning capability of unmanned surface vessels.
2025,47(18): 49-53 收稿日期:2025-1-14
DOI:10.3404/j.issn.1672-7649.2025.18.009
分类号:V249.3
基金项目:黑龙江省博士后面上项目(LBH-Z22161)
作者简介:范世伟(1993 – ),男,博士,讲师,研究方向为协同导航技术
参考文献:
[1] 孔大伟, 蔡昱明. 水声被动测距技术及误差分析[J]. 舰船电子工程, 2019, 39(6): 156-159.
KONG D W, CAI Y M. Sonar passive ranging technology and error analysis[J]. Ship Electronic Engineering, 2019, 39(6): 156-159.
[2] 姜朝宇, 王喜龙. AUV协同导航定位算法研究[J]. 舰船科学技术, 2015, 37(10): 105-110.
JIANG C Y, WANG X L. The cooperative navigation of AUVs: A Survey[J]. Ship Science and Technology, 2015, 37(10): 105-110.
[3] 夏红兵. 协同导航定位系统中无人艇导航数据的误差分析[J]. 舰船科学技术, 2023, 45(14): 90-93.
XIA H B. Error analysis of unmanned boat navigation data in collaborative navigation and positioning system[J]. Ship Science and Technology, 2023, 45(14): 90-93.
[4] JIANG Z, SHEN X, WANG H. Throughput of underwater acoustic networks with significant multipath delays[J]. Journal of the Franklin Institute, 2018, 355(10): 4473-4492.
[5] 张立川, 徐德民, 刘明雍. 基于双水听器的多自主水下航行器协同导航方法[J]. 系统工程与电子技术, 2011, 33(7): 177-180.
[6] 刘亚龙. 多水下航行器协同定位算法研究[D]. 哈尔滨: 哈尔滨工程大学, 2015.
[7] WANG Q, FAN S, ZHANG Y, et al. A novel adaptive sliding observation-based cooperative positioning algorithm under factor graph framework for multiple UUVs[J]. IEEE Transactions on Industrial Informatics, 2023, 19(8): 8743-8753.
[8] 于飞, 范世伟, 李倩, 等. 主从式USV协同定位系统性能分析[J]. 哈尔滨工业大学学报, 2017, 49(9): 129-135.
[9] FAN Y, ZHANG Y, WANG G, et al. Maximum correntropy based unscented particle filter for cooperative navigation with heavy-tailed measurement noises[J]. Sensors, 2018, 18(10): 3183.
[10] 范世伟, 张亚, 郝强, 等. 基于因子图的协同定位与误差估计算法[J]. 系统工程与电子技术, 2021, 43(2): 499-507.
[11] WEBSTER S E. Decentralized single-beacon acoustic navigation: Combined communication and navigation for underwater vehicles[D]. Baltimore : Johns Hopkins University, 2010.
[12] 陈小波, 陈玲. 定位噪声统计特性未知的变分贝叶斯协同目标跟踪[J]. 吉林大学学报(工学版), 2023, 53(4): 1030-1039.
[13] FAN S, GAO X, ZHANG Y, et al. Dual-model derailment detection algorithm based on variational bayesian kalman filtering[J]. Micromachines 2024, 15(8): 939.