无人作战系统已成为未来乃至当前战场中不可或缺的一部分,如何反制无人作战系统成为了热点研究问题。基于未来现代化海战中对无人作战艇的反制这一背景,提出基于分布式微分博弈方法的无人艇追击-逃避对策的制导原理。通过对无人艇追击-逃避运动关系建模,构建合适的博弈指标,将追击-逃避博弈问题转化为微分博弈求解问题。利用3条追击无人艇和3条逃避无人艇对所提制导原理进行仿真实验验证,实验结果表明追击无人艇能够对逃避无人艇进行协同堵截。该研究为未来海战中无人艇集群自主决策提供了理论参考价值。
Since unmanned combat system has been an indispensable part of the future and even the present battlefield. How to countering unmanned combat system is a hot research problem. On the basis of countering unmanned war ship in the future of modern naval warfare, a distributed differential game-based unmanned surface vehicles (USVs) pursuit-evasion game guidance principle is proposed. By modeling the kinematics relations of USVs' pursuit-evasion and setting suitable game perform indices, the problem of pursuit-evasion game is transformed into the differential game solving problem. A simulation case is carried out to verify the proposed guidance principle, where three pursuit USVs and three evasion USVs are considered. The simulation results show that the pursuit USVs can achieve the cooperative interception to evasion USVs. The study of this paper may provide theoretical reference value to USVs’ decision-making in future sea battles.
2025,47(18): 54-59 收稿日期:2024-11-26
DOI:10.3404/j.issn.1672-7649.2025.18.010
分类号:U664.82
基金项目:国家优秀青年科学基金项目(52322111);国家自然科学基金项目(52171291);辽宁省应用基础研究计划项目(2023JH2/101600039);辽宁省“兴辽英才计划”青年拔尖人才(XLYC2203129);中央高校基本科研业务费专项资金(3132023502,3132023137);大连市杰出青年科技人才项目(2022RJ07)
作者简介:尹世麟(2000 – ),男,博士研究生,研究方向为船舶编队、多智能体博弈
参考文献:
[1] NING X, ZHANG H T, ZHU L J. Prescribed-time collective evader-capturing for autonomous surface vehicles[J]. Automatica, 2024, 167: 111761.
[2] LOPEZ V, LEWIS F, WAN Y, et al. Solutions for multiagent pursuit-evasion games on communication graphs: finite-time capture and asymptotic behaviors[J]. IEEE Transactions on Automatic Control, 2020, 65(5): 1911-1923.
[3] 庞樨, 杨神化, 陈国权, 等. 基于扩展式博弈的多船协商避碰研究[J]. 舰船科学技术, 2025, 47(1): 76-82.
PANG X, YANG S H, CHEN G Q, et al. Research on multi-ship negotiation collision avoidance based on extensive game model[J]. Ship Science and Technology, 2025, 47(1): 76-82.
[4] 于长东, 刘新阳, 陈聪, 等. 基于多智能体深度强化学习的无人艇集群博弈对抗研究[J]. 水下无人系统学报, 2024, 32(1): 79-86.
[5] 刘鹏, 赵建新, 张宏映, 等. 基于改进型MADDPG的多智能体对抗策略算法[J]. 火力与指挥控制, 2023, 48(3): 132-138,145.
[6] HUA X, LIU J X, ZHANG J J, et al. An apollonius circle based game theory and Q-learning for cooperative hunting in unmanned aerial vehicle cluster[J]. Computers and Electrical Engineering, 2023, 110: 108876.
[7] 程代展, 付世华. 博弈控制论简述[J]. 控制理论与应用, 2018, 35(5): 588-592.
[8] VAMVOUDAKIS K, LEWIS F. Online actor-critic algorithm to solve the continuous-time infinite horizon optimal control problem[J]. Automatica, 2010, 64: 878-888.
[9] LONG J, YU D X, WEN G X, et al. Game-based backstepping design for strict-feedback nonlinear multi-agent systems based on reinforcement learning[J]. IEEE Transactions on Neural Networks And Learning Systems, 2024, 35(1): 817-830.
[10] VAMVOUDAKIS K, LEWIS F. Multi-player non-zero-sum games: Online adaptive learning solution of coupled Hamilton-Jacobi equations[J]. Automatica, 2011, 47: 1556-1569.
[11] MAZOUCHI M, NAGHIBI-SISTANI M B, SANI S K H. Novel distributed optimal adaptive control algorithm for nonlinear multi-agent differential graphical games[J]. IEEE/CAA Journal of automatica sinica, 2018, 5(1): 331-341.
[12] 初庆栋, 尹羿博, 龚小旋, 等. 基于双偶极向量场的欠驱动无人船目标跟踪制导方法[J]. 中国舰船研究, 2022, 17(4): 32-37.
[13] WEN G X, CHEN C. L. P. , GE S. S. Simplified optimized backstepping control for a class of nonlinear strict-feedback systems with unknown dynamic functions [J]. IEEE Transactions on Cybernetics, 2021, 51(9): 4567-4580.