随着无人潜航器(UUV)的广泛应用,如何在复杂水下环境中实现自主避障成为了关键问题。本文建立了UUV的动力学和模糊PID抗干扰模型,分析了海流及其干扰力模型,提出了改进的三维A*避障算法,并且基于UE5实现了海流影响下UUV的三维海底环境虚拟仿真和避障实验。仿真验证结果表明,海流对UUV航行路径的干扰显著;模糊PID可以有效实现在海流力影响下航迹和姿态的稳定性;三维避障算法能够有效应对纵深方向的障碍物,在Z轴进行避障,从而具有更强的避障能力,同时兼容二维避障算法。
With the widespread application of Unmanned Underwater Vehicles (UUVs), achieving autonomous obstacle avoidance in complex underwater environments has become a key challenge. This paper first establishes the dynamics and fuzzy PID anti-interference model for UUVs, analyzes the ocean current and its interference force model, and proposes an improved 3D A* obstacle avoidance algorithm. Based on UE5, a virtual simulation of the UUV's 3D underwater environment and obstacle avoidance under the influence of ocean currents is implemented. Simulation results show that ocean currents significantly interfere with the UUV's navigation path, fuzzy PID can effectively realize the stability of track and attitude under the influence of current force, and the 3D obstacle avoidance algorithm effectively addresses obstacles in the Z-axis demonstrating stronger obstacle avoidance capability and compatibility with 3D obstacle avoidance algorithm.
2025,47(18): 60-67 收稿日期:2024-12-16
DOI:10.3404/j.issn.1672-7649.2025.18.011
分类号:U664.82;TP37
基金项目:教育部学位与研究生教育发展中心主题案例库项目(ZT-231028914);江苏省研究生科研与实践创新计划项目(SJCX24_2611);中国科学院软件研究所合作项目(2205072325)
作者简介:嵇聪(1999 – ),男,硕士研究生,研究方向为计算机仿真
参考文献:
[1] 刘小飞, 李明杰. 海流随机干扰下水下目标追踪航行器轨迹实时规划研究[J]. 舰船科学技术, 2021, 43(4): 43-45.
LIU X F, LI M J. Research on real-time planning of underwater target tracking vehicle trajectory under random interference of ocean currents[J]. Ship Science and Technology, 2021, 43(4): 43-45.
[2] 王延波. 动态障碍物环境下UUV路径规划及避碰方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2022.
[3] 佟盛, 李大辉. 具有实时避障能力的UUV编队技术设计与研究[J]. 舰船科学技术, 2020, 42(23): 72-75.
TONG S, LI D H. Design and research of UUV formation technology with real-time obstacle avoidance capability[J]. Science and Technology, 2020, 42(23): 72-75.
[4] 程建华, 李鹏程, 管行, 等. 基于改进A*算法的UUV冰下避障航迹规划算法[J]. 导航定位与授时, 2021, 8(6): 13-18.
[5] 胥洪峰. 基于UE4引擎的三维地形场景构建技术研究——以重庆市涪陵为例[J]. 四川建材, 2024, 50(3): 32-34.
[6] 童筱涵, 滕璇璇. 多自由度无人船系统建模[J]. 电子测试, 2021(4): 48-49+43.
[7] 姜建平, 刘鹏仲, 张国龙. 基于模糊自整定PID控制器在UUV中的应用研究[J]. 舰船科学技术, 2014, 34(6): 138-141.
JIANG JI P, LIU P Z, ZHANG G L. Application of fuzzy self-adjusting PID controller in UUV[J]. Ship Electronic Engineering, 2014, 34(6): 138-141.
[8] 高博, 徐德民, 张福斌, 等. 海流建模及其在路径规划中的应用[J]. 系统仿真学报, 2010, 22(4): 957-961.
[9] 刘涛. 基于改进A*算法的无人船路径规划研究[J]. 舰船科学技术, 2022, 44(5): 134-137.
LIU T. Research on unmanned ship path planning based on improved A* algorithm[J]. Ship Science and Technology, 2022, 44(5): 134-137.
[10] 方阳丽, 唐猛, 罗珊. 船舶横倾姿态动态调整控制设计与仿真[J]. 舰船科学技术, 2015, 37(9): 56-60.
FANG Y L, TANG M, LUO S. Design and simulation of dynamic adjustment for ship heeling attitude[J]. Ship Science and Technology, 2015, 37(9): 56-60.
[11] 武延涛, 张震, 刘伟良, 等. 基于改进A*算法的全局路径规划[J/OL]. 自动化技术与应用, 2024, 1-7.
WU Y T, ZHANG Z, LIU W L, et al. Global path planning based on improved A* algorithm[J/OL]. Techniques of Automation and Applications, 2024, 1-7[2024-12-02].
[12] 谌生, 文家燕, 高远. 基于改进A*算法和Bezier曲线平滑的单AGV路径规划[J/OL]. 广西科技大学学报, 2024, 1-16.