针对无人艇在风浪流等高海况环境下易受干扰的问题,开展了无人艇自适应航行控制方法研究:提出了基于滑模神经网络(Sliding Mode Control-Radial Basis Function Neural Networks,SMC-RBFNN)的航速控制算法,具有更快的收敛速度,提高了无人艇航速控制的鲁棒性和抗干扰性;提出了基于改进无模型自适应迭代学习(Model Free Adaptive Iterative Learning Control,MFAILC)的航向控制算法,提高了模型变化、不确定性干扰条件下的航向控制精度和收敛速度;提出了一种基于改进积分视线(Integral Line of Sight,ILOS)算法的航路跟踪技术,提高了复杂海洋环境下的航路跟踪能力。最后,通过仿真和航行试验对算法的可行性进行验证。结果表明,航路平均跟踪误差在2 m以内,相对传统控制方法,所提出的自适应航行控制方法抗干扰能力强、收敛速度快、跟踪精度高。
Aiming at the problem that unmanned surface vehicle (USV) is susceptible to interference in high sea conditions such as wind, wave and current, the adaptive navigation control method of USV is studied: A speed Control algorithm based on Sliding Mode control-radial Basis Function Neural Networks (SMC-RBFNN) is proposed, which has a faster convergence rate and improves the robustness and anti-interference of speed control of USV. A heading Control algorithm based on Model Free Adaptive Iterative Learning Control (MFAILC) is proposed to improve the accuracy and convergence speed of heading control under the conditions of model changes and uncertain interference. A new route tracking technique based on improved Integral Line of Sight (ILOS) algorithm is proposed to improve the route tracking capability in complex Marine environment. Finally, the feasibility of the algorithm is verified by simulation and sailing test. The results show that the average tracking error of the route is less than 2 m. Compared with the traditional control method, the proposed adaptive navigation control method has strong anti-interference ability, high tracking accuracy and fast convergence speed.
2025,47(18): 68-74 收稿日期:2024-12-3
DOI:10.3404/j.issn.1672-7649.2025.18.012
分类号:U664.82;TP273
作者简介:王术龙(1982 – ),男,学士,高级工程师,研究方向为系统总体
参考文献:
[1] 天鹰. 从无人水面艇的军事应用看中国海军无人水面艇的发展前景[J]. 舰载武器, 2012(2): 28-34.
TIAN Y. The development prospect of Chinese Navy unmanned surface vehicle from its military application[J]. Shipborne weapons, 2012(2): 28-34.
[2] 杜志啸, 赵甲文, 郭鹍, 等. 船舶避障技术综述[J]. 舰船电子工程, 2019, 39(5): 21-15.
DU Z X, ZHAO J W, GUO K, et al. Review of research on obstacle avoidance for ships[J]. Ship Electronic Engineering, 2019, 39(5): 21-15.
[3] 谭西都. 搜救无人艇航速及航向控制研究[D]. 杭州, 浙江大学, 2019.
[4] 陈继洋. 无人艇全局路径规划与运动控制研究[D]. 上海: 上海海洋大学, 2022.
[5] 窦强. 双体槽道型双泵喷水推进无人艇航向控制算法研究[J]. 指挥控制与仿真, 2021, 43(4): 17-20.
DOU Q. Research on heading control algorithm of double-body channel dual-pump water jet propulsion USV[J]. Command Control & Simulation, 2021, 43(4): 17-20.
[6] 王伟, 王勇, 周晨光, 等. 基于模糊神经网络的无人艇航向控制器研究[J]. 合肥工业大学学报, 2023, 46(4): 458-462.
WANG W, WANG Y, ZHOU C G, et al. Research on unmanned surface vehile heading controller based on fuzzy neural network PID[J]. Journal of Hefei University of Technology, 2023, 46(4): 458-462.
[7] 罗志刚. 无人艇航向优化控制方法研究[D]. 武汉: 江汉大学, 2022.
[8] 刘志强, 叶曦, 张志伟. 无人艇自适应航迹跟踪控制策略研究[J]. 江汉大学学报, 2023, 51(2): 78-89.
LIU Z Q, YE X, ZHANG Z W. Research on adaptive trajectory tracking control strategy for unmanned surface vehicle[J]. Journal of Jianghan University, 2023, 51(2): 78-89.
[9] 温景松. 双桨单舵无人艇运动控制系统研究与实现[D]. 镇江: 江苏科技大学, 2019.
[10] 胡俊祥, 葛愿, 刘硕, 等. 基于线性自抗扰控制的海上无人艇航向控制[J]. 安徽工程大学学报, 2020, 60(3): 194-202.
HU J X, GE Y, LIU S, et al. Unmanned Sea Vehicle Course Control Based on Linear Active Disturbance Rejection Control[J]. Journal of Anhui Polytechnic University, 2020, 60(3): 194-202.
[11] 章沪淦, 张显库. 船舶航向保持控制研究综述[J]. 广东海洋大学学报, 2022, 42(6): 38-46.
ZHANG H G, ZHANG X K. Review of ship course keeping control[J]. Journal of Guangdong Ocean University, 2022, 42(6): 38-46.
[12] 袁健. 差速转向式双推无人艇航向与航速联合控制研究[J]. 汕头大学学报, 2022, 37(3): 69-80.
YUAN J. Heading and speed control of double push unmanned vehicle with different speed of thrusters[J]. Journal of Shantou University, 2022, 37(3): 69-80.
[13] 柳晨光, 初秀民, 毛庆洲, 等. 无人船自适应路径跟踪控制系统[J]. 机械工程学报, 2020, 56(8): 216-227.
LIU C G, CHU X M, MAO Q Z, et al. Adaptive path following control system for unmanned surface vehicles[J]. Journal of Mechanical Engineering, 2020, 56(8): 216-227.
[14] 陈霄, 刘忠, 张建强, 等. 基于改进积分视线导引策略的欠驱动无人水面艇路径跟踪[J]. 北京航空航天大学学报, 2018, 44(3): 489-499.
CHEN X, LIU Z, ZHANG J Q, et al. Path following of underactuated USV based on modified integral line-of-sight guidance strategies[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(3): 489-499.
[15] 徐鹏飞, 骆佳成, 丁延旭, 等. 基于IDLOS的水面无人艇路径跟踪控制技术研究[J]. 中国造船, 2020, 61(4): 133-142.
XU P F, LUO J C, DING Y X, et al. Research on path tracking of unmanned surface vehicles[J]. Shipbuilding of China, 2020, 61(4): 133-142.
[16] WU D, YUAN K, HUANG Y, et al. Design and test of an improved active disturbance rejection control system for water sampling unmanned surface vehicle[J]. Ocean Engineering, 2022, 245: 110367.
[17] SONG L, XU C, HAO L, et al. Research on PID parameter tuning and optimization based on SAC-Auto for USV path following[J]. Journal of Marine Science and Engineering, 2022, 10(12): 1847.
[18] ZHENG Y, TAO J, HARTIKAINEN J, et al. DDPG based LADRC trajectory tracking control for underactuated unmanned ship under environmental disturbances[J]. Ocean Engineering, 2023, 271: 113667.
[19] WOO J, YU C, KIM N. Deep reinforcement learning-based controller for path following of an unmanned surface vehicle[J]. Ocean Engineering, 2019, 183: 155-166.
[20] MATSUO Y, LECUN Y, SAHANI M, et al. Deep learning, reinforcement learning, and world models[J]. Neural Networks, 2022, 152: 267-275.
[21] WANG W, DU J, TAO Y. A dynamic collision avoidance solution scheme of unmanned surface vessels based on proactive velocity obstacle and set-based guidance[J]. Ocean Engineering, 2022, 248: 110794.
[22] 程宇, 付悦文, 李鲁. 无人水面艇自主航行控制仿真系统研究[J]. 火力与指挥控制, 2024, 49(1): 63-72.
CHENG Y, FU Y W, LI L. Research on simulation system of autonomous navigation control of USV[J]. Fire Control & Command Control, 2024, 49(1): 63-72.