拖曳式ROV在进行拖曳作业时类似于深海拖曳系统,受限于声学探测设备的要求,拖曳作业时需要对拖曳式ROV的深度进行精确的控制,而传统的深度控制方法控制效果较差。为此提出一种基于粒子群算法优化的拖曳式ROV深度自抗扰控制方法(PSO-ADRC),使用PSO-ADRC算法控制绞车收放缆进而控制拖曳式ROV的拖曳深度。仿真结果表明,PSO-ADRC算法在拖曳式ROV的深度控制中具有动态响应快、稳态精度高、抗干扰能力强的优点,简化了调参过程,为实际应用提供借鉴。
The towed ROV is similar to the deep towing system when carrying out towing operations, but it is limited by the requirements of acoustic detection equipment, and the depth of the towed ROV needs to be accurately controlled during towing operations, while the traditional depth control method has poor control effect. Therefore, a towed ROV depth active disturbance rejection control method (PSO-ADRC) based on particle swarm optimization was proposed, and the PSO-ADRC algorithm was used to control the winch retracting and unwinding cables to control the towing depth of the towed ROV. The simulation results show that the PSO-ADRC algorithm has the advantages of fast dynamic response, high steady-state accuracy and strong anti-interference ability in the depth control of towed ROV, which simplifies the parameter tuning process and provides reference for practical application.
2025,47(18): 75-81 收稿日期:2024-10-11
DOI:10.3404/j.issn.1672-7649.2025.18.013
分类号:U665.13
作者简介:孙元昊(1998 – ),男,硕士,研究方向为水下机器人技术
参考文献:
[1] 陈鑫, 李彬, 李智刚, 等. 拖曳式ROV的结构与低阻外形设计[J]. 舰船科学技术, 2023, 45(13): 69-75.
CHEN X, LI B, LI Z G, et al. Structure and low resistance shape design of towed ROV[J]. Ship Science and Technology, 2023, 45(13): 69-75.
[2] 曹金亮, 刘晓东, 张方生, 等. DTA-6000声学深拖系统在富钴结壳探测中的应用[J]. 海洋地质与第四纪地质, 2016, 36(4): 173-181.
[3] 陶华, 罗进华, 李彦杰, 等. 深拖在深水崎岖海底作业的研究[J]. 水道港口, 2016, 37(2): 213-216.
[4] 李志彤, 董凌宇, 陆凯, 等. 深海拖曳系统水下控制技术研究[J]. 海洋地质前沿, 2023, 39(3): 30-39.
[5] 高国章, 张家赫. 基于ADRC参数优化的拖曳式水下航行器定深控制分析[J]. 大连海事大学学报, 2020, 46(2):17-25.
[6] 陈城, 刘云平, 鲁倍辰, 等. 基于IBSA的四旋翼ADRC参数优化[J/OL]. 控制工程, 1-11[2024-08-10].
[7] 乌云嘎, 徐会希, 姜志斌. 基于RBF神经网络的新型AUV自抗扰控制方法[J]. 舰船科学技术, 2023, 45(18): 85-91.
WU Y G, XU H X, JIANG Z B. A novel active disturbance rejection control method for AUV based on RBF neural network[J]. Ship Science and Technology, 2023, 45(18): 85-91.
[8] GAO Z Q. Scaling and bandwidth-parameterization based controller tuning[C]// Proceedings of the 2003 American Control Conference, 2003.
[9] ABLOW C M, SCHECHTER S. Numerical simulation of undersea cable dynamic[J]. Ocean Engineering, 1983, 10(6): 443-457.
[10] 赵煜森. ROV水下作业仿真系统的研究[D]. 哈尔滨: 哈尔滨工程大学, 2011.
[11] 施生达. 潜艇操纵性 [M]. 北京: 国防工业出版社, 2021.
[12] HAN J Q. From PID to active disturbance rejection control[J]. IEEE Transactions on Industrial Electronics, 2009, 56(3): 900-906.
[13] 赵大刚, 张顺, 高适, 等. 海流对水下航行器运动及载荷影响研究综述[J/OL]. 中国舰船研究, 1-17[2024-08-22].
[14] 李德军, 张伟, 王磊, 等. 海流作用下潜水器运动仿真研究[J]. 舰船科学技术, 2023, 45(11): 13-16.
LI D J, ZHANG W, WANG L, et al. Research on motion simulation of submersible under ocean current[J]. Ship Science and Technology, 2023, 45(11): 13-16.
[15] CHEN X, LI D H, GAO Z Q, et al. Tuning method for second - order active disturbance rejection control[C]// Proceedings of the 30th Chinese Control Conference, 2011.