为满足日益复杂的水下作业任务需求,加装机械手的无人水下航行器(UUV)或称为水下机器人-机械手系统(UVMS)已成为研究热点,但多UVMS协同作业场景下的水动力特性仍不明晰,亟需开展多UVMS协同作业场景下的流场特性分析。本文利用三维粘流理论的水动力分析软件(STAR-CCM+),并基于SST $ k - \omega $模型模拟仿真来流速度为5.144 m/s条件下的水下无人潜器的阻力值。分别分析有无装载机械手情况下,2种不同潜器水下协同作业时不同作业间距对潜器自身所受阻力值以及潜器周围流场的影响。研究结果表明,双潜器的协同作业导致潜器受到的阻力增加,但随着双潜器之间距离的增加,各项阻力值随之减小,并趋近于单潜器作业时受到的阻力值。此外,通过优化潜器主体外型能够有效减小潜器所受阻力值,其中潜器1效果比潜器2显著提高了13.80%。
In order to meet the demands of increasingly complex underwater operations, unmanned underwater vehicles (UUV) retrofitted with manipulators or known as underwater Vehicle-Manipulator systems (UVMS) have become a research hotspot, but the hydrodynamic characteristics of multiple UVMS in cooperative operation scenarios are still unclear, and there is an urgent need to carry out the flow field characterization of multiple UVMS in cooperative operation scenarios. In this paper, the hydrodynamic analysis software (STAR-CCM+) based on the 3D viscous flow theory is used to simulate the resistance value of the underwater unmanned submersible under the condition of the incoming velocity of 5.144 m/s. The effects of the presence or absence of a loaded manipulator and different distances when two different submersibles are working together underwater on the drag force on the submersible and the flow field around the submersible are analyzed. The results show that the drag force on the submersible increases due to the cooperative operation of the two submersibles, but with the increase of the distance between the two submersibles, the drag force decreases and tends to be similar to that of the single submersible. In addition, by optimising the shape of the main body of the submarine, it was possible to effectively reduce the resistance value of the submarine, with the effect of submarine No.1 being significantly higher than that of submarine No.2 by 13.80%.
2025,47(18): 82-88 收稿日期:2024-12-11
DOI:10.3404/j.issn.1672-7649.2025.18.014
分类号:U661.1
作者简介:邢齐齐(1998 – ),女,硕士研究生,研究方向为水下航行器运动响应
参考文献:
[1] 孔祥正. 面向UUV的MEMS矢量尾流探测器的设计与优化[D]. 太原: 中北大学, 2024.
[2] 龚国林, 周俊吉, 王博涵, 等. 反制潜艇与UUV协同作战模式研究[J]. 科技与创新, 2024(19): 105-107+110.
[3] 席龙. 小型UUV系统集成设计与导航控制技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2014.
[4] 赵桥生, 彭超, 李德军. 深海潜水器协同作业水动力干扰研究[J]. 船舶力学, 2020, 24(10): 1288-1293.
[5] 章期文. 水下航行体尾流场水动力学特征分析与利用[D]. 上海: 上海交通大学, 2020.
[6] 孔培云, 王志博. 潜器水下拖曳系统操作运动敏感性分析[J]. 舰船科学技术, 2024, 46(18): 54-60.
[7] 陆德顺, 张少谦, 王浩宇, 等. 跨介质飞潜器水面起降过程流场及运动特性研究[J]. 水下无人系统学报, 2024, 32(3): 434-450.
[8] 朱爱军, 应良镁, 郑宏, 等. 海底、海面对水下航行体阻力影响的模型试验研究[J]. 船舶力学, 2012, 16(4): 368-374.
[9] 吴利红, 李超, 刘社文, 等. 自主水下机器人极近海底直航运动性能预报[J/OL]. 哈尔滨工程大学学报, 2025(6): 1-7.
[10] 王佳茂, 杨鹏, 李静茹. 蝠鲼仿生型多模块UUV的水动力分析及能量捕获效能研究[J]. 中国舰船研究, 2023, 18(6): 106-118.
[11] KOROL Y M, VALERI N, BRAZHKO A, et al. Bottom effect on the submarine moving close to the sea bottom[J]. The Journal of Entific and Engineering Research, 2016, 6(1): 106-113.
[12] MITRA A, PANDA J P, WARRIOR H V. Experimental and numerical investigation of the hydrodynamic characteristics of autonomous underwater vehicles over sea-beds with complex topography[J]. Ocean Engineering, 2020, 198: 106978.
[13] 王硕, 梅志远, 付晓, 等. 无人潜器耐压壳体选型与承载特征规律研究[J]. 中国舰船研究, 2024, 19(4): 247-253.
[14] 任梦晨, 姚惠之, 赵桥生, 等. 水下航行体近场UUV斜航状态水动力性能研究[J]. 中国造船, 2024, 65(4): 273-280.
[15] YANG L, ZHAO S, WANG X, et al. Deep-sea underwater cooperative operation of manned/unmanned submersible and surface vehicles for different application scenarios[J]. Journal of Marine Science and Engineering, 2022, 10, 909.
[16] REHMAN, FAHEEM UR. Hydrodynamic modelling for a transportation system of two unmanned underwater vehicles: semi-empirical, numerical and experimental analyses[J]. Journal of Marine Science and Engineering, 2021: 500.
[17] DU X, WANG H, HAO C, et al. Analysis of hydrodynamic characteristics of unmanned underwater vehicle moving close to the sea bottom[J]. Defence Technology, 2014, 10(1): 76-81.
[18] 王慧, 朱仁传, 李国焕, 等. 槽道滑行艇水动力特性的数值研究(英文)[J]. 船舶力学, 2024, 28(12): 1864-1879.
[19] 周宇, 钱炜祺, 邓有奇, 等. k-ω SST两方程湍流模型中参数影响的初步分析[J]. 空气动力学学报, 2010, 28(2): 213-217.
[20] 刘志华, 熊鹰, 韩宝玉. 潜艇流场数值计算网格与湍流模型选取[J]. 华中科技大学学报(自然科学版), 2009, 37(7): 98-101.