恶劣海况下,多无人水面船易出现摇晃、颠簸、偏航等现象,导致航行受多种不确定性因素干扰,集群避障效果下降,为此,提出恶劣海况下多无人水面船集群自动控制方法。考虑恶劣海况确定多无人水面船集群运动律,通过有限时间观测器实时观测与补偿无人水面船不确定信息,使其精准感知周围环境和自身状态,获取干扰因素,以支撑避碰决策。根据运动律获取无人水面船的期望纵荡速度与艏摇角速度,联合观测器结果计算纵荡与艏向自由度误差,从而设计纵荡与艏向控制律,实现多无人水面船集群的自动控制。实验结果显示,应用设计方法控制的多无人水面船集群避障路径更安全、合理,且无人水面船位置误差最小值达到了0.5 m,控制误差低,实际应用效果好。
Under adverse sea conditions, multiple unmanned surface vessels are prone to shaking, bumping, yawing, and other phenomena, which can cause navigation to be affected by various uncertain factors and reduce the effectiveness of cluster obstacle avoidance. Therefore, an automatic control method for multiple unmanned surface vessel clusters under adverse sea conditions is proposed. Considering adverse sea conditions, determine the motion law of multiple unmanned surface vessel clusters, and use a finite time observer to observe and compensate for uncertain information of unmanned surface vessels in real time, enabling them to accurately perceive the surrounding environment and their own state, obtain interference factors, and support collision avoidance decisions. Based on the motion law, the expected heave velocity and yaw rate of unmanned surface vessels are obtained. The joint observer results are used to calculate the errors in heave and yaw degrees of freedom, and to design heave and yaw control laws to achieve automatic control of multiple unmanned surface vessel clusters. The experimental results show that the obstacle avoidance path of the multi unmanned surface vessel cluster controlled by the application design method is safer and more reasonable, and the minimum position error of the unmanned surface vessel reaches 0.5 m, with low control error and good practical application effect.
2025,47(18): 89-93 收稿日期:2025-4-7
DOI:10.3404/j.issn.1672-7649.2025.18.015
分类号:U664.82;TP273.4
基金项目:江西省教育厅科学技术研究项目(GJJ2203015);辽宁省教育科学“十四五”规划 2024年度立项一般课题(JG24EB021);中国成人教育协会“数字赋能教育”2024年度立项一般课题(2024-SJYB-018S)
作者简介:吴卫珍(1982 – ),女,硕士,讲师,研究方向为自动化装置与系统方向
参考文献:
[1] 武冬兵, 武建国, 张彬, 等. 不同海况下波浪驱动无人船的振荡响应分析[J]. 舰船科学技术, 2023, 45(23): 85-90.
WU D B, WU J G, ZHANG B, et al. Oscillatory response analysis of wave-powered USV under different sea states[J]. Ship Science and Technology, 2023, 45(23): 85-90.
[2] 李丹, 于邵祯, 杨华东. 国外水面无人艇环境感知技术前沿进展[J]. 兵工学报, 2024, 45(S2): 97-104.
LI D, YU S Z, YANG H D. Progress on environmental perception technology of foreign unmanned surface vehicles[J]. Acta Armamentarii, 2024, 45(S2): 97-104.
[3] 夏国清, 孙显信, 任哲达. 基于状态反馈控制器的多无人水面船集群控制[J]. 控制与决策, 2023, 38(7): 2028-2034.
XIA G Q, SUN X X, REN Z D. Swarm control for multiple unmanned surface vehicles system based on state feedback controller[J]. Control and Decision, 2023, 38(7): 2028-2034.
[4] 董颖慧, 陈健, 吕成兴, 等. 基于扰动观测器的水面无人船自适应模糊控制器设计[J]. 控制理论与应用, 2024, 41(2): 261-272.
DONG Y H, CHEN J, LV C X, et al. Design of adaptive fuzzy controller for unmanned surface vessel based on disturbance observer[J]. Control Theory & Applications, 2024, 41(2): 261-272.
[5] 陈浩宇, 徐海祥, 魏骁, 等. 基于KFESO的多无人艇分布式协同路径跟踪复合抗扰控制[J]. 中国舰船研究, 2025, 20(1): 191-202.
CHEN H Y, XU H X, WEI X, et al. KFESO-based composite anti-disturbance control for distributed cooperative path following of unmanned surface vehicles[J]. Chinese Journal of Ship Research, 2025, 20(1): 191-202.
[6] 曲星儒, 江雨泽, 李初, 等. 基于改进TD3的欠驱动无人水面艇路径跟踪控制[J]. 上海海事大学学报, 2024, 45(3): 1-9.
QU X R, JIANG Y Z, LI C, et al. Path following control for under-actuated unmanned surface vehicles based on improved TD3[J]. Journal of Shanghai Maritime University, 2024, 45(3): 1-9.
[7] 张恩华, 王巍凯, 苏玉民. 基于事件触发的水面无人艇无模型容错饱和控制[J]. 哈尔滨工程大学学报, 2024, 45(10): 1865-1872.
ZHANG E H, WANG W K, SU Y M. Adaptive model-free fault-tolerant control for unmanned surface vehicle with input saturation and event-triggered mechanism[J]. Journal of Harbin Engineering University, 2024, 45(10): 1865-1872.
[8] 毛寿祺, 杨平, 高迪驹, 等. 基于细菌觅食-改进蚁群优化算法的水面无人船路径规划[J]. 控制工程, 2024, 31(4): 608-616.
MAO S Q, YANG P, GAO D J, et al. Path planning for unmanned surface vehicle based on bacterial foraging-improved ant colony optimization algorithm[J]. Control Engineering of China, 2024, 31(4): 608-616.
[9] 于特, 刘佳鹏, 吴超, 等. 基于非线性干扰观测器的无人船与自主水下航行器协同运动控制策略[J]. 上海交通大学学报, 2023, 57(S1): 114-123.
YU T, LIU J P, WU C, et al. USV and AUV cooperative control strategy based on nonlinear disturbance observer[J]. Journal of Shanghai Jiaotong University, 2023, 57(S1): 114-123.
[10] 王宁, 张雪峰, 李洁龙, 等. 面向港口环境精细感知的无人船多传感器融合SLAM系统[J]. 船舶工程, 2024, 46(7): 81-89.
WANG N, ZHANG X F, LI J L, et al. Multi-sensor fusion SLAM system of an unmanned surface vehicle for fine sensing in port environment[J]. Ship Engineering, 2024, 46(7): 81-89.