以直观呈现水下机器人运动姿态设计结果,满足其水下作业需求为目的,应用三维虚拟技术,提出一种水下机器人运动姿态设计方法。运用三维虚拟技术的CATIA软件,构建水下机器人三维模型,并通过六自由度运动方程构建水下机器人动力学模型,借助三维虚拟技术的Unreal Engine软件,将定水下机器人三维模型和动力学模型进行绑定,通过设置水体密度、阻力等参数搭建水下虚拟仿真环境,构建水下机器人横纵姿态控制方程,计算出机器人在不同时刻的姿态变化,从而实现水下机器人在不同作业需求下的姿态设计。实验表明:动力学模型精准反映了水下机器人运动特性,设计的水下机器人姿态与期望姿态契合度较高,在水下机器人运动姿态设计方面具有可行性与优势。
With the aim of visually presenting the design results of underwater robot motion posture and meeting its underwater operation needs, a method for underwater robot motion posture design is proposed using 3D virtual technology. Using CATIA software with 3D virtual technology, a 3D model of an underwater robot is constructed, and a dynamic model of the underwater robot is built through a six degree of freedom motion equation. With the help of Unreal Engine software with 3D virtual technology, the 3D model and dynamic model of the underwater robot are bound. By setting parameters such as water density and resistance, an underwater virtual simulation environment is built, and the horizontal and vertical attitude control equations of the underwater robot are constructed. The attitude changes of the robot at different times are calculated, thus achieving the attitude design of the underwater robot under different operational requirements. The experiment shows that the dynamic model accurately reflects the motion characteristics of underwater robots, and the designed underwater robot posture has a high degree of fit with the expected posture, which is feasible and advantageous in the design of underwater robot motion posture.
2025,47(18): 94-98 收稿日期:2025-4-27
DOI:10.3404/j.issn.1672-7649.2025.18.016
分类号:TP391
作者简介:叶婷(1990 – ),女,硕士,讲师,研究方向为数字媒体技术、三维虚拟技术
参考文献:
[1] 李亚鑫, 陈顺杰, 王宇. 基于康达效应的水下机器人矢量推进器设计与性能评价[J]. 船舶力学, 2023, 27(4): 498-507.
LI Y X, CHEN S J, WANG Y. Design and evaluation of the coanda-effect-based vector thruster for underwater vehicles[J]. Journal of Ship Mechanics, 2023, 27(4): 498-507.
[2] 张军豪, 陈英龙, 杨昕宇, 等. 刚柔耦合水下蛇形机器人的建模与控制仿真[J]. 工程科学学报, 2023, 45(12): 2095-2107.
ZHANG J H, CHEN Y L, YANG X Y, et al. Modeling and control simulation of a bio-inspired underwater snake robot with a novel rigid-soft coupling structure[J]. Chinese Journal of Engineering, 2023, 45(12): 2095-2107.
[3] 张鑫, 秦东晨, 谢远龙, 等. 基于双环自适应滑模的移动机器人轨迹跟踪控制[J]. 合肥工业大学学报(自然科学版), 2024, 47(1): 13-20.
ZHANG X, QIN D C, XIE Y L, et al. Trajectory tracking control of mobile robot via double-loop adaptive sliding mode strategy[J]. Journal of Hefei University of Technology(Natural Science), 2024, 47(1): 13-20.
[4] 刘莹, 邵彧. 利用姿态传感器多点位控制机器人交互方法[J]. 机械设计与制造, 2023, 384(2): 266-269.
LIU Y, SHAO Y. Multi-point control robot interaction method using attitude sensor[J]. Machinery Design & Manufacture, 2023, 384(2): 266-269.
[5] 李维宇, 王玉璟. 动态协同算法在挖掘机器人控制的优化研究[J]. 机械设计与制造, 2024, 400(6): 331-337.
LI W Y, WANG Y J. Optimization of dynamic cooperative algorithm in the control of mining robot[J]. Machinery Design & Manufacture, 2024, 400(6): 331-337.
[6] 朱子健, 姜言清, 李柯垚, 等. 水下机器人移动式对接的全局路径规划方法[J]. 哈尔滨工程大学学报, 2024, 45(10): 1873-1879.
ZHU Z J, JIANG Y Q, LI K Y, et al. A global path planning method for mobile docking AUV[J]. Journal of Harbin Engineering University, 2024, 45(10): 1873-1879.
[7] 马秀峰, 张奇峰, 孙英哲. 仿生六足机器人步态设计与运动仿真[J]. 计算机仿真, 2023, 40(2): 255-260, 269.
MA X F, HANG Q F, SUN Y Z. Gait design and motion simulation of bionic hexapod robot[J]. Computer Simulation, 2023, 40(2): 255-260, 269.
[8] 崔雪锴, 白越, 裴信彪. 基于模糊PID的球形两栖机器人的设计及控制[J]. 电光与控制, 2024, 31(3): 99-103, 114.
CUI X K, BAI Y, PEI XI B. Design and control of a spherical amphibious robot based on fuzzy PID[J]. Electronics Optics & Control, 2024, 31(3): 99-103, 114.