本文介绍了船用甲醇/柴油燃料发动机发展现状和排放物特性,针对甲醇发动机存在逃逸的未燃甲醇和甲醛排放问题,对NOX与HC协同脱除技术进行了讨论,结果表明在船用发动机的排温窗口甲醇SCR技术对NOX转化效率较低,无法满足IMO TierIII的限值要求,因此DOC+SCR方案或SCR+DOC方案为推荐的NOX与HC协同脱除技术。采用DOC+SCR的方案,有利于保持NOX脱除效率,反应过程也不会产生有毒的氰化物,但空间布置不占优势。采用SCR+DOC的方案,结构紧凑,但应适当增加SCR催化剂用量,弥补NOX脱硝效率的损失,同时关注DOC去除氰化物的效果。实际应用时,可根据空间布置要求,选择合适的DOC与SCR布置方式。
The current development status and emission characteristics of marine methanol/diesel fuel engines are introduced in this paper. In view of the emission problem of unburned methanol and formaldehyde in methanol engine, the collaborative removal technology of NOX and HC is discussed. The results show that methanol SCR technology has a low NOX conversion efficiency in the exhaust temperature window of marine engines, which cannot meet the limit requirements of IMO Tier III. Therefore, The DOC+SCR scheme or SCR+DOC scheme is the recommended technology for synergistic removal of NOX and HC. The use of DOC+SCR scheme is beneficial for maintaining the efficiency of NOX removal, and the reaction process will not produce toxic cyanide, but the spatial arrangement is not advantageous. Adopting the SCR+DOC scheme, the structure is compact, but the amount of SCR catalyst should be appropriately increased to compensate for the loss of NOX denitrification efficiency, while paying attention to the effectiveness of DOC in removing cyanide. In practical applications, suitable DOC and SCR layout methods can be selected according to spatial layout requirements.
2025,47(18): 119-126 收稿日期:2024-12-23
DOI:10.3404/j.issn.1672-7649.2025.18.020
分类号:TK46+4
基金项目:上海市2022年度“科技创新行动计划”(22QB1406300)
作者简介:田新娜(1987 – ),女,博士,高级工程师,研究方向为发动机排放后处理
参考文献:
[1] KRYGER A. 船舶脱碳关键技术路径评估[J]. 中国船检, 2024(4): 30-37.
KRYGER A. Evaluation of Key Technological Pathways for Ship Decarbonization[J]. China Classification Society, 2024(4): 30-37.
[2] 王梦川, 洪子鑫, 李峰, 等. 绿色甲醇产业发展现状及前景分析[J]. 国际石油经济, 2024, 32(5): 78-84.
WANG M C, HONG Z X, LI F, et al. Green methanol industrydevelopment status and prospect analysis[J]. International Petroleum Economics, 2024, 32(5): 78-84.
[3] 申立忠, 赵静平, 黄粉莲, 等. 甲醇/柴油双燃料发动机燃烧与排放特性研究[J]. 合肥工业大学学报(自然科学版), 2024, 47(9): 1183-1190.
SHEN L Z, ZHAO J P, HUANG F L, et al. Combustion and emission characteristics of methanol/diesel dual-fuel engin[J]. Journal of Hwdwi University of Technology(Natural Science), 2024, 47(9): 1183-1190.
[4] 黄粉莲, 李玲玲, 万明定, 等. 废气再循环对甲醇/柴油双燃料发动机性能和排放的影响 [Z]. 中国内燃机学会, 2022.
[5] SOLUTIONS M E. MAN B&W Dual-Fuel engines pass half-million hour milestone [Z]. MAN Energy Solutions. 2019.
[6] 国际船舶海工网. 中国船舶集团温特图尔大型甲醇燃料发动机将再装备6艘集装箱船 [Z]. 搜狐新闻, 2023.
[7] 赵凯. 船用甲醇发动机的研发现状与发展趋势 [Z]. 信德海事, 2022.
[8] 中船动力集团. 绿色新动力!又一甲醇发动机首次点火成功! [Z]. 王琦. 中国船舶集团有限公司, 2015.
[9] 张东明, 黄立, 曾宪友, 等. 甲醇气道喷射和缸内直喷两种燃烧概念下的船用中速机开发 [Z]. 2024世界内燃机大会. 2024.
[10] AABO K, HINNEMANN B, ROSENKVIST P, et al. MAN B&W two-stroke methanol-powered engines for small and large container vessels in the A. P. moller maersk fleet – experience and new development [Z]. 30th CIMAC World Congress. Busan, Korea; CIMAC. 2023.
[11] 赵廉, 孙平, 刘军恒, 等. DOC/SCR对聚甲氧基二甲醚/甲醇双燃料发动机NOX排放的影响[J]. 石油学报(石油加工), 2021, 37(4): 875-883.
ZHAO L, SUN P, LIU J H, et al. Effects of DOC/SCR on the NOX emission of polyoxymethylene dimethyl ethers/methanol dual-fuel engine[J]. ACTA PETROLEI SINICA(Petroleum Processing Section), 2021, 37(4): 875-883.
[12] ZINCIR B, DENIZ C, TUNéR M. Investigation of environmental, operational and economic performance of methanol partially premixed combustion at slow speed operation of a marine engine [J]. Journal of Cleaner Production, 2019, 235.
[13] 危红媛. 柴油/甲醇组合燃烧发动机的非常规排放特性研究 [D]. 天津: 天津大学, 2018.
[14] SOLUTIONS M E. The methanol-fuelled MAN B&W lGIM engine [R]: MAN Energy Solutions, 2021.
[15] ZHU Z, MU Z, WEI Y, et al. Experimental evaluation of performance of heavy-duty SI pure methanol engine with EGR[J]. Fuel, 2022, 325: 124948.
[16] PIUMETTI M, BENSAID S, FINO D, et al. Catalysis in diesel engine NOX aftertreatment: a review [J]. Catalysis, Structure & Reactivity, 2015, 1(4): 155-173.
[17] HAMADA H, HANEDA M. A review of selective catalytic reduction of nitrogen oxides with hydrogen and carbon moNOXide[J]. Applied Catalysis A-general, 2012, 421: 1-13.
[18] FURFORI S, RUSSO N, FINO D, et al. NO SCR reduction by hydrogen generated in line on perovskite-type catalysts for automotive diesel exhaust gas treatment[J]. Chemical Engineering Science, 2010, 65(1): 120-127.
[19] ARVE K, POPOV E A, RöNNHOLM M, et al. From a fixed bed Ag-alumina catalyst to a modified reactor design: how to enhance the crucial heterogeneous-homogeneous reactions in HC-SCR[J]. Chemical Engineering Science, 2004, 59: 5277-5282.
[20] ZHAO Y, CHOI B, KIM D. Effects of Ce and Nb additives on the de-NOX performance of SCR/CDPF system based on Cu-beta zeolite for diesel vehicles[J]. Chemical Engineering Science, 2017, 164: 258-269.
[21] METKAR P S, HAROLD M P, BALAKOTAIAH V. Experimental and kinetic modeling study of NH3-SCR of NOX on Fe-ZSM-5, Cu-chabazite and combined Fe- and Cu-zeolite monolithic catalysts[J]. Chemical Engineering Science, 2013, 87: 51-66.
[22] THOMAS J F, PRIKHODKO V Y, PIHL J A, et al. Selective catalytic reduction of oxides of nitrogen with ethanol/gasoline blends over a silver/alumina catalyst in lean gasoline engine exhaust[J]. 2015.
[23] CHENG X, BI X T. A review of recent advances in selective catalytic NOX reduction reactor technologies[J]. Particuology, 2014, 16: 1-18.
[24] MRAD R, AISSAT A, COUSIN R, et al. Catalysts for NOX selective catalytic reduction by hydrocarbons (HC-SCR)[J]. Applied Catalysis A: General, 2015, 504: 542-548.
[25] FROBERT A, RAUX S, LAHOUGUE A, et al. HC-SCR on silver-based catalyst: from synthetic gas bench to real use[J]. SAE International Journal of Fuels and Lubricants, 2011, 5: 389-398.
[26] 黄永仲. 甲醇柴油双燃料发动机二氧化氮排放后处理方案研究[J]. 内燃机工程, 2019, 40(4): 72-77.
HUANG Y Z. Research on after-treatment solution to nitrogen dioxide emissions from a diesel/methanol engine[J]. Chinese Internal Combustion Engine Engineering, 2019, 40(4): 72-77.
[27] LIU J, LIANG W, MA H, et al. Effects of integrated aftertreatment system on regulated and unregulated emission characteristics of non-road methanol/diesel dual-fuel engine[J]. Energy, 2023, 282: 128819.
[28] 贺泓, 余运波, 刘俊峰, 等. 富氧条件下氮氧化物的选择性催化还原Ⅱ. Ag/Al2O3催化剂上含氧有机物选择性还原NOX的性能 [J]. 催化学报, 2004, 25(6): 460-466.
HE H, YU Y B, LIU J F, et al. Selective catalytic reduction of NOX in the presence of excess OxygenⅡ. SCR of NOX with Oxo-Organic Compounds over Ag/Al2O3 [J]. Chinese Journal of Catalysis, 2004, 25(6): 460-466.
[29] MäNNIKKö M, SKOGLUNDH M, INGELSTEN H H. Selective catalytic reduction of NOX with methanol over supported silver catalysts [J]. Applied Catalysis B: Environmental, 2012, 119-120: 256-266.
[30] CHEN C, YAO A, YAO C, et al. Selective catalytic reduction of nitrogen oxides with methanol over the (cobalt-molybdenum)/alumina dual catalysts under the diesel methanol dual fuel exhaust conditions[J]. Chemical Engineering Science, 2020, 211: 115320.
[31] WANG H, ZHANG R, LI P, et al. Mechanistic insight into the methanol selective catalytic reduction of NO reaction over Cu-containing perovskites[J]. Journal of Catalysis, 2019, 377: 480-493.