海上舰载雷达目标回波信号具有稀疏性,难以实现高效、高保真传输。为此,研究海上舰载雷达通信共享信号压缩感知方法。基于OFDM调制的海上舰载雷达通信一体化共享信号模型,分析海上舰载雷达通信一体化通信系统的发射信号、目标回波信号。针对回波信号的稀疏性,引入压缩感知技术,通过非相关变换方法将信号变换至低维测量向量,实现信号的压缩。在信号重构阶段,采用正交匹配追踪算法,在稀疏字典中检索与残余分量匹配度最显著的原子,经正交化处理后投影信号,重构出原始信号,有效优化传输效果。经测试,此方法有效提升海上舰载雷达通信共享信号的抗扰性与传输效率。
The target echo signal of shipborne radar on the sea has sparsity, that is, most of the energy in the signal is concentrated in a few coefficients, making it difficult to achieve efficient and high fidelity transmission. To this end, research is being conducted on compressed sensing methods for shared signals in maritime shipborne radar communication. An integrated shared signal model for maritime shipborne radar communication based on OFDM modulation, analyzing the transmission signals and target echo signals of the maritime shipborne radar communication integrated communication system. In response to the sparsity of echo signals, compressive sensing technology is introduced to transform the signal into a low dimensional measurement vector through non correlated transformation methods, achieving signal compression. In the signal reconstruction stage, the orthogonal matching tracking algorithm is used to retrieve the atoms with the most significant matching degree with the residual components from the sparse dictionary. After orthogonalization, the projected signal is reconstructed to obtain the original signal, effectively optimizing the transmission effect. After testing, this method effectively improves the anti-interference and transmission efficiency of communication shared signals for shipborne radar at sea.
2025,47(18): 166-170 收稿日期:2025-4-25
DOI:10.3404/j.issn.1672-7649.2025.18.027
分类号:U674.703.3;TN959
基金项目:河南省科技攻关项目(232102210046)
作者简介:李立凯(1985 – ),男,硕士,讲师,研究方向为FPGA集成电路、人工智能
参考文献:
[1] 侯纪业, 陈江涛, 刘长江, 等. 一种舰载雷达海面目标检测处理方法[J]. 中国电子科学研究院学报, 2023, 18(3): 248-252.
[2] 王杰, 马海兰, 梁兴东, 等. 基于时延-多普勒联合调制的雷达通信一体化技术研究[J]. 信号处理, 2023, 39(6): 1047-1059.
[3] 孙帅, 吕红光, 黄骁. 遮挡环境下基于航海雷达的舰船目标跟踪方法研究[J]. 中国舰船研究, 2024, 19(1): 55-61.
SUN S, LV H G, HUANG X. Ship target tracking for marine radar in occluded environments[J]. Chinese Journal of Ship Research, 2024, 19(1): 55-61.
[4] 张荣政, 王勇. 基于TRIAA与压缩感知的ISAR去微多普勒方法[J]. 数据采集与处理, 2022, 37(6): 1218-1227.
[5] 吴宏昊, 李琦, 韩壮志, 等. 基于压缩感知的多载频随机抖动FMCW信号处理研究[J]. 电光与控制, 2022, 29(5): 102-106, 112.
[6] 韩彦睿, 李伟, 臧延华, 等. 基于量子压缩感知的宽带射频信号测量[J]. 物理学报, 2023, 72(16): 10-18.
[7] 陈子睿, 陈阿磊, 刘维建, 等. 天波超视距雷达非均匀采样信号频谱重构[J]. 系统工程与电子技术, 2024, 46(4): 1236-1246.
[8] TIRUPATHAIAH K, RAVI S Y, RAMESH S. Enhancing 5G massive MIMO systems using a compressive sensing-based approach[J]. Traitement du Signal: signal image parole, 2023, 40(4): 1705-1713.