在IB-MRT-LBM中,固体边界用拉格朗日点来表示,较多的拉格朗日点数量可以更为精准地反映出固体的几何特征,但拉格朗日点过于密集会降低计算的稳定性。基于拉格朗日插值速度修正的IB-MRT-LBM,针对拉格朗日点密集的浸没边界提出了一种改进的速度修正方法,对密集点边界进行三阶精度的插值修正,从而实现了计算快速收敛稳定。以NACA0012翼型为研究对象,采用二重网格加密方法对流场进行网格划分,对均匀来流下的静止翼型和升沉俯仰耦合运动翼型进行仿真。计算结果表明,改进的速度修正算法实现了密集点边界的稳定计算,为水翼、仿生推进器等复杂流固耦合问题提供了兼具高稳定性、高精度与低耗散特性的数值计算方法。
In IB-MRT-LBM, solid boundaries are represented by Lagrange point, and a larger number of Lagrange point can more accurately reflect the geometry of the solid, but too much Lagrange point reduces computational stability. Based on the IB-MRT-LBM with Lagrange interpolation velocity correction, an improved velocity correction method is proposed for the Lagrange point immersion boundary, thus the fast convergence and stability of the calculation are realized. Taking NACA0012 airfoil as the research object, the flow field is meshed by using the double grid densification method, the static airfoil and the heave-pitch coupled motion airfoil with uniform incoming flow are simulated, the improved velocity correction algorithm realizes the stability calculation of the dense point boundary, providing a numerical calculation method with high stability, high accuracy, and low dissipation characteristics for complex fluid structure coupling problems such as hydrofoils and biomimetic thrusters.
2025,47(19): 7-14 收稿日期:2024-12-20
DOI:10.3404/j.issn.1672-7649.2025.19.002
分类号:U66; O351.2
基金项目:国家重点研发计划(2022YFC2805201);中远海运集团科研项目(2023-2-Z001-02-01);大连市揭榜挂帅技术攻关项目(2023JB11SN006)
作者简介:张佳宁(1965-),女,教授,研究方向为船舶流体力学。
参考文献:
[1] PESKIN C S. The immersed boundary method[J]. Acta Numerica, 2002: 1-36.
[2] CERCIGNANI C. The Boltzmann equation and its applications[J]. SIAM Review, 1989, 31(2): 339-340.
[3] FENG Z G, MICHAELIDES E E. The immersed boundary-lattice Boltzmann method for solving fluid-particles interaction problems[J]. Journal of Computational Physics, 2004, 195: 602-628.
[4] FENG Z G, MICHAELIDES E E. Proteus: a direct forcing method in the simulations of particulate flows[J]. Journal of Computational Physics, 2005 (202): 20-51.
[5] SHU C, LIU N Y, CHEW Y T. A novel immersed boundary velocity correction-lattice Boltzmann method and its application to simulate flow past a circular cylinder[J]. Journal of Computational Physics, 2007 (226).
[6] WU J, SHU C. Implicit velocity correction-based immersed boundary-lattice Boltzmann method and its applications[J]. Journal of Computational Physics, 2009 (228).
[7] 王星. 基于速度修正的浸入边界—格子Boltzmann方法及应用研究[D]. 南京: 南京航空航天大学, 2012.
[8] 王富海. 基于MRT-LBM的流场与声场仿真计算[D]. 武汉: 华中科技大学, 2017.
[9] YANG F, SHI X M, LIU L G. Flow pattern in two-dimensional lid-driven semi-circular cavity: A MRT lattice Boltzmann analysis[J]. Journal of Engineering Thermophysics, 2012, 33(4): 595-598.
[10] LIN L S, CHANG H W, LIN C A. Multi relaxation time lattice Boltzmann simulations of transition in deep 2D lid driven cavity using GPU[J]. Computers & Fluids, 2013, 80: 381-387.
[11] GSELL S, FAVIER J. Direct-forcing immersed-boundary method: A simple correction preventing boundary slip error[J]. Journal of Computational Physics, 2021, 435: 110265.
[12] QIN J, KOLAHDOUZ E M, GRIFFITH B E. An immersed interface-lattice Boltzmann method for fluid-structure interaction[J]. Journal of Computational Physics, 2021, 428: 109807.
[13] YANG F, GU X, XIA X, et al. A peridynamics-immersed boundary-lattice Boltzmann method for fluid-structure interaction analysis[J]. Ocean Engineering, 2022, 264: 112528.
[14] QIN S, JIANG M, MA K, et al. Fully resolved simulations of viscoelastic suspensions by an efficient immersed boundary-lattice Boltzmann method[J]. Particuology, 2023, 75: 26-49.
[15] IMAMURA T, SUZUKI K, NAKAMURA T, et al. Flow simulation around an airfoil using lattice Boltzmann method on generalized coordinates, AIAA 2004-0244.
[16] 刘春友, 李作旭, 王连平. 基于格子玻尔兹曼方法的局部网格加密算法——粗细网格间的数据转换[J]. 力学学报, 2023, 55(11): 2480-2503.
LIU C Y, LI Z X, WANG L P. Local grid encryption algorithm based on lattice Boltzmann method - data conversion between coarse and fine grids[J]. Acta Mechanica Sinica, 2023, 55(11): 2480-2503.
[17] 王润堃. 格子玻尔兹曼矩形网格多松弛模型局部加密算法研究[D]. 济南: 山东大学, 2019.
[18] GUO K, CUI X, LIU M. A coupled lattice Boltzmann-volume penalization for flows past fixed solid obstacles with local mesh refinement[J]. Mathematical Problems in Engineering, 2018, (2018-1-29), 2018, 2018(PT. 2): 1-12.
[19] 钏助仁. 低雷诺数下翼型绕流的格子Boltzmann方法数值模拟[J]. 可再生能源, 2019, 37(6): 931-936.
CHUAN Z R. Numerical simulation of lattice Boltzmann method for airfoil flow at low reynolds numbers[J]. Renewable Energy, 2019, 37(6): 931-936.
[20] 杨淑超. 基于拍动翼型气动力特性的数值模拟研究[D]. 南京: 南京航空航天大学, 2018.