随着可再生能源的持续发展和清洁能源需求的增长,液氢作为一项前景广阔的清洁能源载体,对其生产、运输及储存的安全性探讨显得尤为关键。为提高浮式制氢平台的耐撞性能,降低船舶碰撞过程中损伤,需对舷侧结构耐撞性进行研究。首先,基于不同角度的碰撞场景,运用Ls-Dyna软件进行浮式制氢平台舷侧结构碰撞损伤仿真研究。在此基础上,研究碰撞过程中的损伤、变形与能量吸收性能,得到碰撞载荷和能量吸收时间序列数据。其次,基于SGA-BP-GA算法,以船体舷侧结构的耐撞性能为优化目标,展开了系统的耐撞性能优化研究。通过采用该算法,旨在有效提升船体舷侧结构在碰撞情况下的能量吸收能力和整体安全性,从而为船舶设计提供更加可靠的性能评估和优化方案。计算结果显示,采用SGA-BP-GA算法进行耐撞性能优化,其结果比原有设计提高了19.04%。
With the continuous development of renewable energy and the growth of clean energy demand, liquid hydrogen, as a promising clean energy carrier, is particularly critical to explore the safety of its production, transportation and storage. In order to improve the crashworthiness of the floating hydrogen production platform and reduce the damage during ship collision, the crashworthiness of the outboard structure needs to be studied. First, based on the collision scenarios from different angles, Ls-Dyna software is used to simulate the collision damage of the side structure of the floating hydrogen platform. On this basis, the damage, deformation and energy absorption performance in the collision process are studied, and the collision load and energy absorption time series data are obtained. Secondly, based on the SGA-BP-GA algorithm, this study launched a systematic crashworthiness optimization study with the crashworthiness of the hull side structure as the optimization objective. By adopting this algorithm, it aims to effectively improve the energy absorption capacity and overall safety of the hull side structure in the case of collision, so as to provide a more reliable performance evaluation and optimization scheme for ship design. Calculation results show that the results of crashworthiness optimization using the SGA-BP-GA algorithm are 19.04% higher than the original design.
2025,47(19): 15-20 收稿日期:2024-11-14
DOI:10.3404/j.issn.1672-7649.2025.19.003
分类号:U663
基金项目:国家自然科学基金资助项目(51979130)
作者简介:陈保龙(2000-),男,硕士研究生,研究方向为船舶结构力学
参考文献:
[1] 刘刚, 高明星, 陈志颖, 等. 基于SGA-BP-GA方法的FPSO舷侧结构耐撞性能优化设计[J]. 振动与冲击, 2019, 38(21): 62-70.
[2] COWPER G R, SYMONDS P. Strain-hardening and strain-rate effects in the impact loading of cantilever beams[R]. Division of Applied Mathematics, Brown University. 1957.
[3] 王庆丰, 刘娟, 崔相义, 等. 小型LNG运输船耐撞性能对比分析[J]. 舰船科学技术, 2018, 40(7): 11-16.
WANG Q F, LIU J, CUI X Y, et al. Comparative analysis of crashworthiness of small LNG carriers[J]. Ship Science and Technology, 2018, 40(7): 11-16.
[4] ALKHALEDI A N, SAMPATH S, PILIDIS P. Economic analysis of a zero-carbon liquefied hydrogen tanker ship[J]. International Journal of Hydrogen Energy, 2022, 47(66): 28213-28223.
[5] IBRAHIM O S, SINGLITICO A, PROSKOVICS R, et al. Dedicated large-scale floating offshore wind to hydrogen: Assessing design variables in proposed typologies[J]. Renewable and Sustainable Energy Reviews, 2022, 160: 112310.
[6] EDWARDS E C, HOLCOMBE A, BROWN S, et al. Evolution of floating offshore wind platforms: A review of at-sea devices[J]. Renewable and Sustainable Energy Reviews, 2023, 183: 113416.
[7] LEE J, PARK B, KIM K H, et al. Multi-objective optimization of liquid hydrogen FPSO at the conceptual design stage[J]. International Journal of Naval Architecture and Ocean Engineering, 2023, 15: 100511.
[8] 张健, 王甫超, 李建朝, 等. 撞击参数对舷侧结构的失效模式分析[J]. 舰船科学技术, 2020, 42(1): 23-27.
ZHANG J, WANG F C, LI J Z, et al. Failure mode analysis of outboard structures by impact parameters[J]. Ship Science and Technology, 2020, 42(1): 23-27.
[9] 高振国. 船体桁材在碰撞与搁浅中的结构变形机理及FPSO 舷侧结构抗撞性能研究[D]. 上海: 上海交通大学, 2015.
[10] 高振国, 胡志强, 王革. FPSO 舷侧结构抗撞性能的解析计算研究[J]. 工程力学, 2014, 31( 增刊1) : 155-160.
[11] ALKHALEDI A N, SAMPATH S, PILIDIS P. A hydrogen fuelled LH2 tanker ship design[J]. Ships and Offshore Structures, 2022, 17(7): 1555-1564.