针对无人船在恶劣海况下船体稳定性差、推进动力不足等缺点,通过SolidWorks软件设计了一款具有波浪适应能力的无人船。利用Ansys AQWA与Maxsurf软件对船体稳性进行多维度仿真分析,最后基于STAR-CCM+软件,采用标准k-ε与VOF模型对波浪环境下的船体阻力进行数值模拟,并将仿真结果与传统经验公式计算的总阻力进行对比分析。计算表明,该无人船初稳性高为5.2 m,在静水条件与三级海浪下的大倾角稳性差异较小,且仿真阻力与计算阻力变化趋势相同。研究证实船体系统设计合理,在预定工况下,无人船的稳性与推进性能满足性能要求。
Addressing the shortcomings of unmanned surface vehicles (USVs) such as poor hull stability and inadequate propulsion under severe sea conditions, a USV with wave adaptability was designed using SolidWorks software. Multi-dimensional simulation analyses of hull stability were conducted using Ansys AQWA and Maxsurf software. Finally, based on the STAR-CCM+ software, the standard k-ε and Volume of Fluid (VOF) models were employed to numerically simulate the hull resistance in wavy environments. The simulation results were compared with the total resistance calculated using traditional empirical formulas. The calculations showed that the initial stability height of the USV was 5.2 m, with minor differences in large-angle stability between calm water conditions and sea states of up to level 3. Additionally, the simulation resistance exhibited a similar trend to the calculated resistance. The research confirmed that the hull system design was reasonable, and under the intended operating conditions, the stability and propulsion performance of the USV met the performance requirements.
2025,47(19): 29-34 收稿日期:2024-12-27
DOI:10.3404/j.issn.1672-7649.2025.19.005
分类号:U662.3
基金项目:国家重点研发计划项目(2017YFC140510)
作者简介:卢光城(2000-),男,硕士研究生,研究方向为数字化设计与虚拟样机技术
参考文献:
[1] 张皓, 赵翔. 无人船发展现状与趋势[J]. 军民两用技术与产品, 2024(10): 13-18.
[2] 杨兴林, 杜鑫, 武少辉. 基于STAR-CCM+的双体船尾插板阻力性能研究[J]. 船舶工程, 2024, 46(9): 31-38+117.
[3] 邓绍初, 高兆进, 覃晓虎, 等. 77.73 m双体船静水阻力预报仿真研究[J]. 武汉船舶职业技术学院学报, 2024, 23(6): 102-108.
[4] 丁垤涛, 蔡树斌, 黄技. 基于STAR-CCM+仿真软件的双体船水动力性能分析[J]. 造船技术, 2024, 52(3): 12-15+83.
[5] 谢云平, 王成刚, 吴海红, 等. 双体船槽道设计及其阻力性能研究[J]. 舰船科学技术, 2023, 45(19): 44-48.
XIE Y P, WANG C G, WU H H, et al. Research on channel design and resistance performance of catamaran[J]. Ship Science and Technology, 2023, 45(19): 44-48.
[6] 陈宇婷, 许士华, 时嘉昊, 等. 基于STAR-CCM+的小型无人双体船水动力性能分析[J]. 中国舰船研究, 2023, 18(5): 73-82.
[7] PARK DW, LEE SANG BONG. The sensitivity of ship resistance to wall-adjacent grids and near-wall treatments[J]. International Journal of Naval Architecture and Ocean Engineering, 2018, 10(6): 683-691.
[8] SONG K W, GUO C Y, SUN C, et al. Simulation strategy of the full-scale ship resistance and propulsion performance[J]. Engineering Applications of Computational Fluid Mechanics, 2021, 15(1): 1321-1342.
[9] 王庆. 500客位穿浪双体船船型优化与设计[D]. 哈尔滨: 哈尔滨工程大学, 2003.
[10] 胡帆, 盛欣磊, 求闰锋. 基于穿浪双体船的气动增升减阻技术[J]. 内燃机与配件, 2018(3): 20-23.
[11] 杨拯. 波浪自适应救助船耐波性研究[D]. 大连: 大连海事大学, 2018.
[12] 盛振邦. 船舶原理[M]. 上海: 上海交大出版社, 2017.
[13] 李聪. 波浪动力艇试验研究[D]. 广州: 华南理工大学, 2015.