为确保船舶与海洋结构安全运行,本研究提出基于应力监测与模态叠加的疲劳评估方法。通过布设少量传感器获取结构应力响应,结合基础模态线性叠加反演全域应力时程,进而实现目标区域疲劳损伤评估。结果表明,该方法在保持可靠性的同时显著降低计算资源需求,并可无缝嵌入现有监测系统进行长期疲劳评估。研究验证了该技术的可行性与可靠性,并指出进一步提升精度的优化方向,为船舶智能化运维提供了兼具安全性和经济性的解决方案。
To ensure the safe operation of ships and offshore structures, this study proposes a fatigue assessment method based on stress monitoring and modal superposition. By deploying a limited number of sensors to acquire structural stress responses, the global stress time history is reconstructed via linear superposition of fundamental modal responses, enabling fatigue damage evaluation in target areas. Results demonstrate that this approach significantly reduces computational resource requirements while maintaining reliability and can be seamlessly integrated into existing monitoring systems for long-term fatigue assessment. The research validates the technical feasibility and reliability of this methodology, while identifying optimization directions for enhanced accuracy through modal parameter refinement. This solution provides a safety-conscious and cost-effective approach for intelligent ship operation and maintenance systems.
2025,47(19): 42-47 收稿日期:2025-1-9
DOI:10.3404/j.issn.1672-7649.2025.19.007
分类号:U663
基金项目:水路交通控制全国重点实验室开放课题基金项目
作者简介:张超群(1990-),男,硕士,助理研究员,研究方向为船舶结构实船监测
参考文献:
[1] LR. Ship Right FDA. Fatigue design assessment procedure[S]. 2004.
[2] DNV. Fatigue assessment of ship structures[S]. 2012.
[3] 中国船级社. 船体结构疲劳强度指南[D]. 北京: 人民交通出版社, 2007.
[4] 王然章, 彭文科, 詹志鹄, 等. 采用简化方法的船体结构疲劳强度校核[J]. 中国造船, 1999(2): 59-68.
[5] 陈超核. 船体结构疲劳强度分析直接计算法[J]. 暨南大学学报(自然科学与医学版), 2005(1): 141-144.
[6] 甄春博, 王天霖, 于鹏垚. 船体结构疲劳可靠性分析的直接计算方法[J]. 哈尔滨工程大学学报, 2018, 39(4): 664-667.
[7] RIBEIRO T, RIGUEIRO C, BORGES L, et al. A comprehensive method for fatigue life evaluation and extension in the context of predictive maintenance for fixed ocean structures[J]. Applied Ocean Research, 2020, 95: 102050.
[8] KIM J H, KIM Y. Numerical simulation on the ice-induced fatigue damage of ship structural members in broken ice fields[J]. Marine Structures, 2019, 66: 83-105.
[9] NAKAMURA A, HAYASHI Y, ICHINOSE H. Verification of load calculation based on site measurements of a 7MW offshore wind turbine on V-shaped semi-submersible floating structure[C]//Grand Renewable Energy proceedings Japan council for Renewable Energy (2018). Japan Council for Renewable Energy, 2018.
[10] 张毅. 冰区海上风机支撑结构疲劳评估方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.
[11] 韩超帅. 多种随机载荷作用下的船舶与海洋工程结构物疲劳评估方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.
[12] BALDWIN C, KIDDY J, SALTER T, et al. Fiber optic structural health monitoring system: Rough sea trials testing of the RV Triton[C]//OCEANS'02 MTS/IEEE. IEEE, 2002.
[13] HJELME D R, BJERKAN L, NEEGARD S, et al. Application of bragg grating sensors in the characterization of scaled marine vehicle models[J]. Applied optics, 1997, 36(1): 328-336.
[14] LIU Y L. Mechanical analysis in structural health monitoring of 30 000-ton ship[D]. Harbin: Harbin Institute of Technology, 2016.
[15] NIELSEN U D, JENSEN J J, PEDERSEN P T, et al. Onboard monitoring of fatigue damage rates in the hull girder[J]. Marine Structures, 2011, 24(2): 182-206.
[16] WANG G, PRAN K, SAGVOLDEN G, et al. Ship hull structure monitoring using fibre optic sensors[J]. Smart materials and structures, 2001, 10(3): 472.
[17] 焦甲龙, 陈超核, 任慧龙, 等. 随机海浪中船舶波浪载荷与砰击载荷的时域水弹性响应分析[C]//第三十届全国水动力学研讨会暨第十五届全国水动力学学术会议论文集 (下册), 2019.
[18] KHARIF C, PELINOVSKY E. Physical mechanisms of the rogue wave phenomenon[J]. European Journal of Mechanics-B/Fluids, 2003, 22(6): 603-634.
[19] 许会芬. 超大型集装箱船弯扭耦合弹振响应及对疲劳强度影响研究[D]. 哈尔滨: 哈尔滨工程大学, 2019.
[20] 陈超核, 钟伟芳. 集装箱船结构设计波浪载荷计算[J]. 华中科技大学学报: (自然科学版), 2008, 36(10): 110-113.
[21] 焦甲龙, 陈超核, 任慧龙. 真实海况下船舶水弹性响应及砰击载荷的大尺度模型试验研究[J]. 船舶力学, 2021,25(2): 137-145.
[22] 张聪. 基于雨流计数法的疲劳可靠性分析[D]. 沈阳: 东北大学, 2021.
[23] 于海成. 超大型集装箱船砰击颤振响应研究[D]. 哈尔滨: 哈尔滨工程大学, 2020.
[24] FALTINSEN O. Sea loads on ships and offshore structures[M]. Cambridge University Press, 1993.
[25] 黄强, 李辉, 任慧龙, 等. 基于船体梁的船体弹性变形预报方法[J]. 船舶工程, 2017, 39(8): 13-17.