为研究舱室内部布局对进水过程的影响,通过调整舱室布局延缓进水过程。利用计算流体力学模拟进水过程,模拟内部存在不同位置纵向水密板、垂向水密板、连通口的模型进水过程,采用层次分析法以进水量、进水时间、进水速度为准则研究不同布局对进水过程的影响。对于研究模型来说,纵向水密板位于0.3 m,连通口高度超过破口上缘、纵向与破口一致的布置延缓进水效果最好。水平水密板高度等于破口下缘高度,连通口纵向与破口不同、横向与破口相同的布置延缓进水效果最好。纵向水密板对进水过程影响较小,板上连通口垂向高度将决定非直接进水舱的进水量;水平水密板高度小于破口中心高度时可延缓进水过程。
Purpose In order to study the influence of the interior layout of the cabin on the water intake process, the water intake process was delayed to the greatest extent by adjusting the cabin layout. Use computational fluid dynamics (CFD) to simulate the water intake process,simulate the model water intake process with longitudinal watertight plates, vertical watertight plates, and connecting ports at different positions inside. Water intake time, water intake speed as criteria to study the impact of different layouts on the water intake process. For the research model: the longitudinal watertight plate is located at 0.3 meters, the height of the communication port exceeds the upper edge of the breach, and the arrangement of the longitudinal and the breach is the same to delay the water intake. The height of the horizontal watertight plate is equal to the height of the lower edge of the breach. The arrangement of the communication port is different from the breach in the longitudinal direction and the same in the lateral direction. The longitudinal watertight plate has little effect on the water intake process, and the vertical height of the communication opening on the plate will determine the inflow of the indirect water intake tank; when the height of the horizontal watertight plate is less than the center height of the breach, the water intake process can be delayed.
2025,47(19): 48-56 收稿日期:2024-12-27
DOI:10.3404/j.issn.1672-7649.2025.19.008
分类号:U661.23
基金项目:军科委重大科研项目(JSLY-20-A20031)
作者简介:丁录顺(1987-),男,硕士研究生,研究方向为系统仿真与模拟训练
参考文献:
[1] 王春雷, 张帅, 刘夕明, 等. 2010—2019年江苏省渔业船舶水上安全事故分析及对策建议[J]. 渔业信息与战略, 2020, 35(2): 109-114.
[2] XU L, YONG M, YANG Z X, et al. Maintainability-based facility layout optimum design of ship cabin. International Journal of Production Research, 2015, 53(3): 677-694.
[3] CORT A, HILLS W. Space layout design using computer assisted methods. Naval Engineers Journal, 1987, 99(3): 249-260.
[4] LIANG X Z, YAN L, SHANG Z J. Ship cabin layout design using game theory[J]. Journal of Marine Science and Technology, 2008, 13(4): 446-454.
[5] 边金宁, 陈淼, 韩涛. 基于船舶破损安全性的舱室优化方法[J]. 中国舰船研究, 2020, 15(2): 23-30.
[6] 孙家鹏, 夏益美. 基于概率破损稳性的集装箱船优化分舱研究[J]. 船舶与海洋工程, 2015, 31(1): 65-69.
[7] 芦树平, 边金宁, 陈淼. 基于SOLAS 2009的船舶概率破损稳性评估研究[J]. 应用科技, 2018, 45(5): 16-21.
[8] 徐邦祯, 杜嘉立, 田佰军. 船舶破舱进水及其影响因素[J]. 大连海事大学学报, 2004, 30(1): 52-54, 57.
[9] LEEK D K, HONG S Y, LEE G J. Theoretical and experimental study on dynamic behavior of a damaged ship in waves[J]. Ocean Engineering, 2007, 34: 21-31.
[10] 凌川惠. 基于能量函数法的船舶舱室通达性优化研究[D]. 大连: 大连理工大学, 2018.
[11] 鄢凯, 陈睿, 安江波. 船舶破损进水流量的解析解算法研究[J]. 科技创新与应用, 2018(32): 114-115.
[12] 高秋新. 破损船舶进水模拟[J]. 船舶力学, 2001, 5(3): 8-17.
[13] 卢俊尹. 基于CFD的舱室破损进水数值研究[D]. 武汉: 华中科技大学, 2013.
[14] 李月萌, 段文洋, 金允龙, 等. 基于CFD模拟的船舶破舱进水过程研究[J]. 中国造船, 2016, 57(2): 149-163.
[15] WANG X, DUAN Q. Improved AHP–TOPSIS model for the comprehensive risk evaluation of oil and gas pipelines[J]. Petroleum Science, 2019, 16(1): 1479-1492.
[16] MASTROCINQUE E, RAMÍREZ J F, HONRUBIA-ESCRIBANO A, et al. An AHP-based multi-criteria model for sustainable supply chain development in the renewable energy sector[J]. Expert Systems With Applications, 2020, 150(prepublish): 113321-113321.
[17] 赵楠, 胡耀, 姜治芳, 等. 生活区舱室布局设计模糊层次分析综合评价[J]. 中国舰船研究, 2013, 8(6): 54-62.
[18] 李晗, 章文俊, 李国帅, 等. 基于灰云和改进AHP的港口船舶应急疏散模型[J]. 上海海事大学学报, 2017, 38(3): 25-30+60。
[19] 徐立, 邓儒超, 徐楚, 等. 基于AHP的船舶核动力装置故障及安全性分析[J]. 交通信息与安全, 2015, 33(1): 95-99.
[20] SAATY T L. The analytical hierarchy process[M]. New York: McGraw-Hill Company, 1980.