为减小船体结构振动传递,在板上敷设周期性阻振质量块,探究其减振原理和方法。运用试验和有限元方法,对周期性阻振质量块的单个晶胞及其组成的一维和二维板结构进行减振分析,利用周期性阻振质量块在结构中产生的弯曲波带隙,使带隙范围内的弯曲波显著衰减。研究结果表明,周期性阻振质量块在弯曲波带隙范围内对板具有显著的减振效果。一维板相较单个晶胞(零维),阻振质量块沿纵向布置的数量增加,减振效果逐步提升;二维板相较一维,横向布置的阻振质量块之间的反向作用力可更有效抑制板的振动。试验测得弯曲波带隙相较于单个晶胞计算更宽且带隙起始频率更低。在有限元分析中,考虑结构阻尼可更加精准地预报频响曲线的高频部分。通过系列试验和有限元仿真相结合的方法,验证了周期性阻振质量块在船体结构中应用的可行性,为新一代船艇减振设计提供理论指导和技术支撑。
To reduce the vibration transmission in ship structures, periodic vibration blocking masses are applied to the plate surface to explore their vibration reduction principles and methods. Through experimental testing and finite element analysis, vibration reduction analysis of a single unit cell of the periodic vibration blocking masses and its corresponding one-dimensional (1D) and two-dimensional (2D) plate structures. The bending wave bandgap generated by the periodic vibration blocking masses significantly attenuates bending waves within the bandgap range. The results show that the periodic vibration blocking masses have a notable vibration reduction effect on the plate within the bending wave bandgap range. For the 1D plate, compared to a single unit cell (zero dimension), the vibration reduction effect gradually improves as the number of vibration blocking masses increases along the longitudinal direction. For the 2D plate, compared to the 1D plate, the reciprocal force between the laterally arranged vibration blocking masses more effectively suppresses the vibration of the plate. The experimental results indicate that the bending wave bandgap is wider and the starting frequency of the bandgap is lower compared to the single unit cell calculations. In the finite element analysis, considering structural damping can more accurately predict the high-frequency portion of the frequency response curve. The feasibility of applying periodic vibration blocking masses in hull structures was verified through a combination of a series of experiments and finite element simulations, providing theoretical guidance and technical support for the vibration reduction design of the next generation of ships.
2025,47(19): 57-62 收稿日期:2024-12-30
DOI:10.3404/j.issn.1672-7649.2025.19.009
分类号:U663.6
基金项目:国家自然科学基金资助项目(52271326)
作者简介:薛宇驰(1997-),男,硕士研究生,研究方向为船舶与海洋工程结构振动分析
参考文献:
[1] 何江洋, 何琳, 徐伟. 船舶推力轴承弹性支撑下减振系统与轴系耦合振动研究[J]. 舰船科学技术, 2018, 40(6): 51-56.
HE J Y, HE L, XU W. Research on dynamic characteristics of shafting under elastic support of marine thrust bearing[J]. Ship Science and technology, 2018, 40(6): 51-56.
[2] ZHANG B L, HAN Q L, ZHANG X M. Recent advances in vibration control of offshore platforms[J]. Nonlinear Dynamics, 2017, 89(2): 755-771.
[3] 王仁智, 于昌利, 李永胜, 等. 复合材料船舶减振降噪数值方法研究[J]. 舰船科学技术, 2020, 42(5): 28-33.
WANG R Z, YU C L, LI Y S, et al. Numerical method for vibration and noise reduction of composite ships[J]. Ship Science and technology, 2020, 42(5): 28-33.
[4] 朱竑祯, 王纬波, 高存法. 新型材料在船舶减振降噪方面的前景与应用[J]. 舰船科学技术, 2016, 38(12): 1-8.
ZHU H Z, WANG W B, GAO C F. The prospect and application of new materials on vibration and sound reduction of ships[J]. Ship Science and technology, 2016, 38(12): 1-8.
[5] LIU Z, ZHANG X, MAO Y, et al. Locally resonant sonic materials[J]. Science, 2000, 289(5485): 1734-1736.
[6] 温激鸿, 郁殿龙, 王刚, 等. 周期结构细直梁弯曲振动中的振动带隙[J]. 机械工程学报, 2005, 41(4): 1-6.
[7] 温激鸿, 王刚, 郁殿龙, 等. 声子晶体振动带隙及减振特性研究[J]. 中国科学E辑, 2007, 37(9): 1126-1139.
[8] 郁殿龙, 刘耀宗, 王刚, 等. 二维声子晶体薄板的振动特性[J]. 机械工程学报, 2006, 42(2): 150-154.
[9] CHEN J S, SHARMA B, SUN C T. Dynamic behavior of sandwich structure containing spring-mass resonators[J]. Composite Structures, 2011, 93(8): 2120-2125.
[10] CHEN J S, SUN C T. Reducing vibration of sandwich structures using antiresonance frequencies[J]. Composite Structures, 2012, 94(9): 2819-2826.
[11] CHEN J S, SUN C T. Wave propagation in sandwich structures with resonators and periodic cores[J]. Journal of Sandwich Structures & Materials, 2013, 15(3): 359-374.
[12] 李寅, 肖勇. 声学超材料板的弯曲波带隙与减振降噪特性[J]. 噪声与振动控制, 2018, 38(Z1): 35-40.
[13] CREMER L, HECKL M, UNGAR E E. Structure-borne sound[M]. Second Edition. Bedim Springer-Verlag, 1988.
[14] LI Y, ZHOU Q, ZHOU L, et al. Flexural wave band gaps and vibration attenuation characteristics in periodic bi-directionally orthogonal stiffened plates[J]. Ocean Engineering, 2019, 178: 95-103.
[15] 孙勇敢, 黎胜. 周期性加肋板振动带隙研究[J]. 船舶力学, 2016, 20(1-2): 142-147.
[16] 周强, 王青山, 钟锐. 阻振结构在甲板结构低频隔振中的应用研究[J]. 中国舰船研究, 2020, 15(5): 176-182.
[17] 夏兆旺, 史德祥, 杨淇, 等. 基于阻振质量的船舶基座结构减振性能分析[J]. 噪声与振动控制, 2023, 43(5): 227-231.
[18] 刘勇. 固体物理导论[M]. 哈尔滨: 哈尔滨工业大学出版社, 2020.
[19] HSU J C. Local resonances-induced low-frequency band gaps in two-dimensional phononic crystal slabs with periodic stepped resonators[J]. Journal of Physics, 2011, 44(5): 055401.