极地层冰环境条件为油气资源钻井装备提出了更高的要求,层冰对极地钻井船定位作业带来了更大的挑战。为探究极地钻井船在定位作业状态下的冰载荷,基于Ls-dyna软件构建船水冰运动耦合模型,对极地钻井船与层冰在不同偏转角度下发生碰撞分别开展数值模拟计算。通过CFD方法计算风、流载荷,采用势流方法计算二阶波浪漂移载荷,对夏季、冬季作业工况环境载荷进行统计对比分析。研究结果表明,层冰破坏形式受到船舶偏转角度的影响,层冰轴向挤压破坏所造成的冰载荷数值更大、随机性更强,冰载荷随着角度的变化规律与其余环境载荷类似,冰载荷在环境载荷中影响显著。研究成果可为后续极地船舶定位系统的设计开发提供载荷输入参考。
Polar ice environment conditions put forward higher requirements for drilling equipment for oil and gas resources, and layer ice brings greater challenges to the positioning of polar drilling ships. In order to investigate the ice load of polar drilling ship during positioning operation, a ship-water-ice motion coupling model was constructed based on Ls-dyna software, and the collision between polar drilling ship and layer ice under different deflection angles was numerically simulated. The wind and flow loads were calculated by CFD method, and the second-order wave drift loads were calculated by potential flow method, and the environmental loads under summer and winter working conditions were statistically and contrarily analyzed. The results show that the ice failure form is affected by the deflection Angle of the ship, and the ice load caused by the axial compression failure of the ice is larger and more random. The ice load changes with the Angle similar to other environmental loads, and the ice load has a significant influence on the environmental loads. The research results can provide load input reference for the subsequent design and development of polar ship positioning system.
2025,47(19): 63-69 收稿日期:2025-1-8
DOI:10.3404/j.issn.1672-7649.2025.19.010
分类号:U662
基金项目:中海油研究总院有限责任公司资助项目( CBG2N21)
作者简介:武志明(1998-),男,硕士,研究方向为船舶与海洋工程结构物设计制造
参考文献:
[1] United States Geological Survey. Circum-Arctic resource appraisal estimates of undiscovered oil and gas north of the Arctic Circle[EB/OL]. http://pubs.usgs.gov/fs/2088/3049/fs2088-3049.pdf
[2] HANSEN E H, LOSET S. Modelling floating offshore units moored broken ice: comparing simulation with ice tank test[J]. Cold regions science and technology, 1999, 29(2): 107-119.
[3] 丛滨, 慕鹏, 宋星晨, 等. 考虑船-冰-水耦合的寒地航行实体靶船载荷响应分析[J]. 舰船科学技术, 2023, 45(12): 1-7.
CONG B, MU P, SONG X C, et al. Load response analysis of full-scale target ship in cold water considering ship-ice-water coupling[J]. Ship Science and Technology, 2023, 45(12): 1-7..
[4] 谷家扬, 刘伟发, 庄月昊, 等. 基于流固耦合方法的极地船型破冰性能研究[J]. 中国造船, 2022, 63(1): 176-187.
[5] 任奕舟, 邹早建. 破冰船在冰层中连续破冰过程的数值模拟[J]. 振动与冲击, 2016, 35(18): 210-213+228.
[6] 丁一, 周利, 丁仕风, 等. 极地系泊钻井平台动力响应分析及优化设计[J]. 江苏科技大学学报(自然科学版), 2024, 38(5): 1-8.
[7] 赵亮, 汪学锋, 李欣, 等. 冰载荷作用下半潜式平台动力定位能力分析[J]. 中国海洋平台, 2022, 37(1): 24-29+42.
[8] LINDQUIST A. Straightforward method for calculation of ice resistance of ships[J]. POAC'89, 1989.
[9] VAVRUS S J, ALKAMA R. Future trends of arctic surface wind speeds and their relationship with sea ice in CMIP5 climate model simulations[J]. Climate Dynamics, 2022, 59(5): 1833-1848.
[10] 苗晨露, 龚昌奇. 船舶流载荷的CFD数值计算[J]. 武汉理工大学学报, 2013, 35(10): 74-79.
[11] 刘为民, 涂勋程, 谷家扬, 等. 基于流固耦合方法的船舶破冰阻力参数敏感性研究[J]. 船舶力学, 2019, 23(11): 1284-1293.