为了获取目标三体船的侧体位置布局及设计宽度和排水量,对目标船型开展侧体布局对三体船的性能影响分析,重点分析侧体垂向位置和宽度变化对船体横稳性、阻力的影响。结果表明:侧体的垂向位置布置过低或过高都会对三体船型的横稳性不利;减小侧体宽度可减少排水量,对阻力有利,但对横稳性不利。在设计三体船侧体时,在确定了侧体相对于主体的纵向位置和横向位置后,需首先根据横稳性和阻力影响确定侧体相对于主体的布置高度,然后再根据横稳性和阻力影响进一步设计侧体宽度。本文建立的三体船侧体布局设计方法,可为工程三体船的侧体布局设计提供参考。
In order to obtain the side-hull position layout, design width and displacement of the target trimaran, the analysis was conducted on the impact of side-hull layout on the performance of the trimaran, with a focus on the effects of changes in the vertical position and width of the side-hull on the transverse stability and resistance of the hull. The results indicate that the side-hull to be located too lowly or too highly in vertical position will be detrimental to the transverse stability of the trimarans; Reducing the width of the side-hull can decrease the displacement, which is beneficial for resistance, but detrimental to transverse stability. When designing the side-hull of a trimaran, after determining the longitudinal and transverse positions of the side-hull relative to the main body, it is necessary to first determine the arrangement height of the side-hull relative to the main body based on the lateral stability and resistance effects, and then further design the width of the side-hull based on the lateral stability and resistance effects. The side-hull layout design method established in this article can provide reference for the side-hull layout design of trimaran in engineering.
2025,47(19): 70-75 收稿日期:2024-12-2
DOI:10.3404/j.issn.1672-7649.2025.19.011
分类号:U662.2
作者简介:王伟(1983-),男,硕士,高级工程师,研究方向为船舶总体设计与性能
参考文献:
[1] 唐建飞, 何术龙, 徐伟光. 不同侧船体对三体船横稳性的影响研究[J]. 船舶力学, 2014, 18(11): 1306.
[2] 孙文祺, 张奇, 姜兆祯, 等. 基于CFD的排水型三体无人艇阻力优化研究[J]. 舰船科学技术, 2023, 45(7): 93-97.
SUN W Q, ZHANG Q, JIANG Z Z, et al. Research on optimization of displacement trimaran USV resistance based on CFD[J]. Ship Science and Technology, 2023, 45(7): 93-97.
[3] 魏亚博, 王建华, 万德成. 基于黏流的三体船片体布局优化[J]. 中国造船, 2022, 63(4): 139-141.
WEI Y B, WANG J H, WAN D C. Layout optimization of trimaran side hulls based on viscous flow[J]. Ship Building of China, 2022, 63(4): 139-141.
[4] 周广利, 振前, 黄德波. 侧体排水量比对三体船阻力性能的影响[J]. 舰船科学技术, 2016, 38(1): 6-11.
ZHOU G L, ZHEN Q, HUANG D B. The resistance performance affected by side-hull displacement ratio of trimaran[J]. Ship Science and Technology, 2016, 38(1): 6-11.
[5] 郑律, 丛刚, 王耀辉. 三体船侧体位置优化设计研究[J]. 船舶, 2012, 23(4): 23-27, 37.
ZHENG L, CONG G, WANG Y H. Optimization design on the side-hull location of trimaran[J]. Ship and Boat, 2012, 23(4): 23-27, 37.
[6] Lloyds Register. Rules for the Classification of Trimarans[S]. 2006.
[7] 王显正, 刘见华. 某型三体船总载荷的特点和强度分析[J]. 船舶与海洋工程, 2020, 36(6): 21-23.
WANG X Z, LIU J H. Analysis of global loads characteristics and strength of a trimaran[J]. Naval Architecture and Ocean Engineering, 2020, 36(6): 21-23.
[8] 张明霞, 韩兵兵, 卢鹏程, 等. 基于STAR-CCM+的小水线面三体船阻力数值仿真[J]. 中国舰船研究, 2018, 13(4): 79-85.
ZHANG M X, HAN B B, LU P C, et al. Numerical simulation for resistance of trimaran small waterplane area center hull based on STAR-CCM+[J]. Chinese Journal of Ship Research, 2018, 13(4): 79-85.