水翼艇在航行时会出现波浪增阻、失速、甲板上浪等现象,这些现象不仅影响船舶安全而且增加运营成本。为了研究水翼艇在波浪中的增阻及运动响应,本文基于计算流体力学(CFD)方法与重叠网格技术,建立了数值波浪水池,开展了水翼艇在迎浪条件下波浪增阻与运动响应的数值模拟,分析不同工况下水翼艇的耐波性能,并研究水翼安装位置对水翼艇波浪增阻的影响。结果表明,航速越大波浪增阻系数越大,当$F{r_\nabla }$=3.456时,在$\lambda /L = 2.5$附近波浪增阻系数达到峰值;水翼的合理安装能够有效降低波浪增阻并改善船体的耐波性能,首尾水翼间距为2.56 m的水翼艇耐波性能最好。本文研究工作可为水翼艇的设计提供一些参考。
Hydrofoil craft will be affected by waves in actual navigation, which will cause phenomena such as added resistance in waves, ship speed loss, Green water and other phenomena, which adversely affects the navigation safety and operation cost of the ship. In order to study the performance of hydrofoil craft in waves, this paper establishes a numerical wave pool based on Computational Fluid Dynamics (CFD) method and overlapping mesh technology, carries out the numerical simulation of hydrofoil craft' added resistance and motion response under the wave conditions, and analyzes the hydrofoil's seakeeping under different wave conditions, and in addition, this paper researches the effect of hydrofoil craft' installation position on the hydrofoil's added resistance. The results show that the higher the speed, the higher the added resistance coefficient, and the added resistance coefficient reaches the peak near $\lambda /L = 2.5$ when $F{r_\nabla }$=3.456. The reasonable installation of hydrofoil craft can effectively reduce the added resistance and improve the seakeeping of the hull,the hydrofoil configuration with a 2.56-meter spacing between the bow and stern hydrofoils demonstrates the optimal seakeeping performance. The research work of this paper can provide some references for the design of hydrofoil craft.
2025,47(19): 76-81 收稿日期:2024-12-20
DOI:10.3404/j.issn.1672-7649.2025.19.012
分类号:U661.1
作者简介:时佳伟(2000-),男,硕士研究生,研究方向为船舶水动力
参考文献:
[1] LIANG L H, JIANG J L , ZHANG S T. Improving the vertical motion of wave piercing catamaran using T-foil[C]//2013 IEEE International Conference on Mechatronics and Automatio, 2013.
[2] SUASTIKA K, HIDAYAT A, RIYADI S. Effects of the application of a stern foil on ship resistance: a case study of an orela crew boat[J]. International Journal of Technology, 2017, 8(7): 1266-1275.
[3] 周俊麟, 董祖舜, 董文才. 水翼艇性能的小系列试验研究[J]. 船舶, 2004(2): 15-19.
[4] LI H J, FIRMANSYAH P A M, SUN K. Boat trial validation and resistance prediction of a 36-foot hydrofoil catamarans using CFD[J]. Journal of Ship Mechanics, 2020, 24(6): 740-753.
[5] BI X, SHEN H, ZHOU J, et al. Numerical analysis of the influence of fixed hydrofoil installation position on seakeeping of the planing craft [J]. Applied Ocean Research, 2019, 90: 101863.
[6] DWIPUTERA, H., PRAWIRA, N. Y., BUDIYANTO, M. A., et al. Effect of angle of attack variation of stern foil on high-speed craft on various speed with computational fluid dynamics method[J]. International Journal of Technology, 2020, 11(7): 1359-1369.
[7] LIAO Y, YILDIRIM A, MARTINS J R, et al. RANS-based optimization of a T-shaped hydrofoil considering junction design [J]. Ocean Engineering, 2022, 262: 112051.
[8] 武启慧, 朱仁庆, 谢彤. 基于CFD的船舶不同浪向下运动及增阻数值分析[J]. 船舶工程2020, 42(S1): 104-108.
[9] NAITO S, HIGAKI S, KATO J, et al. Reduction of added resistance and thrust generation by using a bow wing in waves. Journal of KSNAJ, 2001, 235: 79–89.
[10] SALVESEN N. Added resistance of ships in waves[J]. Journal of Hydronautics, 1978, 12(1): 24-34.
[11] 陆泽华, 曹旭, 李传庆. 基于数值计算的船舶波浪增阻和运动响应预报方法论证[J]. 上海船舶运输科学研究所学报, 2022, 45(4): 13-19+32.
[12] HAVELOCK T H. The drifting force on a ship among waves[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1942, 33(21): 467-475.
[13] BØCKMANN E, STEEN S. The Effect of a Fixed Foil on Ship Propulsion and Motions[C]//Third International Symposium on Marine Propulsors smp’13, Launceston, Tasmania, Australia, 2013.
[14] CAI J, YAO T, LIU H, et al. Experimental and numerical study of the added resistance and seakeeping performance of a new unma-nned survey catamaran[J]. Ocean Engineering, 2024, 308: 118255.
[15] GERRITSMA J, BEUKELMAN W. Analysis of the resistance increase in waves of a fast cargo ship[J]. International shipbuilding progress, 1972, 19(17): 285-293.
[16] 常城. 基于CFD技术的某集装箱船顶浪规则波中波浪增阻模拟研究[D]. 哈尔滨: 哈尔滨工程大学, 2019.
[17] 曹洪建. 海洋工程粘性数值波浪水池开发及应用[D]. 上海: 上海交通大学, 2014.