本文对恒张力条件下微细光缆的水下回收动态过程进行建模与仿真研究。面向自主遥控水下机器人微细光缆的回收难题,提出一种基于集中质量法的微细光缆离散化建模方法,并给出其回收阶段初始状态的力学方程以及计算方法;鉴于回收过程中节点数目的动态变化,提出了基于微细光缆张力变化的节点控制策略,构建了长距离微细光缆回收过程的动力学模型;采用四阶龙格-库塔法对微细光缆的回收过程进行动力学仿真,揭示了微细光缆在回收过程中速度以及张力分布的动态变化规律。结果表明,本文针对微细光缆回收过程动力学特性的研究方法可以有效反映长距离微细光缆的动态变化过程,从而为微细光缆回收装置的研发提供理论参考和设计依据。
This paper conducts dynamic modeling and simulation research on the underwater recovery process of fiber optic micro-cable under constant tension conditions. To address the challenges of recovering fiber optic micro-cables for Autonomous and Remotely-Operated Vehicles, a discretization modeling method for fiber optic micro-cables based on the lumped mass method is proposed. The mechanical equations and computational methods for the initial state during the recovery phase are provided. Considering the dynamic changes in the number of nodes during the recovery process, a node control strategy based on the tension variation of the fiber optic micro-cable is proposed, and a dynamic model for the long-distance recovery process of the fiber optic micro-cable is constructed. The fourth-order Runge-Kutta method is employed to perform dynamic simulations of the recovery process, revealing the dynamic variation patterns of velocity and tension distribution in the fiber optic micro-cable during recovery. Simulation results indicate that the proposed research method for the dynamic characteristics of the fiber optic micro-cable recovery process effectively reflects the dynamic changes in long-distance fiber optic micro-cables, providing theoretical references and design guidance for the development of fiber optic micro-cable recovery devices.
2025,47(19): 120-126 收稿日期:2024-12-31
DOI:10.3404/j.issn.1672-7649.2025.19.019
分类号:U661.3; TP242
基金项目:国家重点研发计划项目(2023YFC2813000);国家自然科学基金面上项目(62173320)
作者简介:吴昊(1995-),男,硕士研究生,研究方向为全海深微细光缆动力学建模及回收装置设计
参考文献:
[1] 唐元贵, 王健, 陆洋, 等. “海斗号”全海深自主遥控水下机器人参数化设计方法与试验研究[J]. 机器人, 2019, 41(6): 697-705.
[2] ABLOW C, SCHECHTER S. Numerical simulation of undersea cable dynamics[J]. Ocean Engineering, 1983, 10(6): 443-457.
[3] XU X, YAO B, REN P. Dynamics calculation for underwater moving slender bodies based on flexible segment model[J]. Ocean engineering, 2013, 57: 111-127.
[4] XU X, ZOU Z. Robust dynamics calculation for underwater moving slender bodies via flexible segment model based optimization[J]. Ocean Engineering, 2015, 108: 493-503.
[5] WANG F, HUANG G, DENG D. Dynamic response analysis of towed cable during deployment/retrieval[J]. Journal of Shanghai Jiaotong University (Science), 2008, 13: 245-251.
[6] CHEN P, LIU Y W, YANG S K, et al. Dynamic characteristics of deep-sea ROV umbilical cables under complex sea conditions[J]. Ocean Engineering, 2021, 239: 109854.
[7] 徐红丽, 燕奎臣. 水下机器人光纤微缆动力学研究[J]. 海洋工程, 2004(4): 126-130.
[8] 孟岩. 深海ARV微细光纤缆动力学和布放方案研究[D]. 上海: 上海交通大学, 2020.
[9] 邓豪, 熊璟, 夏泽洋. 一种用于可形变对象操作的动力学模型隐式求解方法[J]. 机器人, 2024, 46(1): 45-53.
[10] 汤伟江, 刘卫东, 高卓, 等. 潜水器用光纤线团应力分布及影响因素[J]. 兵工学报, 2021, 42(5): 1053-1064.
[11] 王飞. 海洋勘探拖曳系统运动仿真与控制技术研究[D]. 上海: 上海交通大学, 2007.