本文旨在探讨低温环境下冰粒两相流对板式换热器换热效率的影响。低温气候特殊性对换热器性能提出了严峻挑战,因此深入了解冰粒与流体流动的相互作用具有重要意义。采用计算流体力学(CFD)方法,基于欧拉-欧拉模型,模拟冰粒体积分数(0~9%)和冰粒直径(0.1~0.9 mm)范围内的板式换热器内部流场特性。研究发现,冰粒主要在冷端进口区域沉积,其分布特征显著影响换热效率。冰粒与壁面的碰撞行为消耗了流场动能,降低了传热效率。不同冰粒大小和浓度的变化规律进一步表明,冰粒的融化和热量传递过程直接决定了冷端流体的温升速度。
This study aims to investigate the impact of ice particle two-phase flow on the heat exchange efficiency of plate heat exchangers in polar environments. The extreme climatic conditions in polar regions present significant challenges to heat exchanger performance, thus, understanding the interaction between ice particles and fluid flow is of vital importance. Using computational fluid dynamics (CFD) methods based on the Euler-Euler model, we simulated the internal flow field characteristics of plate heat exchangers under conditions of ice particle volume fractions (0~9%) and ice particle diameters (0.1~0.9 mm). The results show that ice particles primarily accumulate in the cold-end inlet region, and their distribution significantly affects heat exchange efficiency. The collision of ice particles with the walls consumes flow field kinetic energy, resulting in reduced heat transfer efficiency. Variations in different ice particle sizes and concentrations further indicate that the melting and heat transfer processes of ice particles directly determine the temperature rise rate of the cold-end fluid.
2025,47(19): 127-132 收稿日期:2024-12-30
DOI:10.3404/j.issn.1672-7649.2025.19.020
分类号:U664
基金项目:国家自然科学基金资助项目(51479152)
作者简介:霍晓萌(1988-),女,高级工程师,研究方向为柴油机冷却和润滑
参考文献:
[1] S. V, S. A, A. M. Experimental insights into heat transfer and pressure drop: A comparative study of copper spray coated and plain corrugated gasket plate heat exchangers[J]. Thermal Science and Engineering Progress, 2024, 56: 103070.
[2] 蒋琼艳. 板式换热器结构优化及传热流动特性分析[D]. 济南: 山东大学, 2023.
[3] ZHANG J, ZHU X, MONDEJAR M E, et al. A review of heat transfer enhancement techniques in plate heat exchangers[J]. Renewable and Sustainable Energy Reviews, 2019, 101: 305-328.
[4] 徐立, 孙强, 张来来, 等. 冰级船板式换热器流动传热分析及结构优化[J]. 柴油机, 2018, 40(3): 29-33.
[5] WANG Y, DING S, YAN A, et al. Flow and heat transfer performance analysis of brazed plate heat exchangers under marine vibration conditions[J]. International Journal of Thermal Sciences, 2024, 205: 109270.
[6] HUA D, ZHANG L, CHEN Y, et al. Experimental investigation of enhanced heat transfer in plate heat exchanger under heaving and yawing conditions[J]. International Communications in Heat and Mass Transfer, 2024, 159: 108307.
[7] 王祖凡, 李亚洲, 杨甘生, 等. 极地钻井液冷却用板式换热器设计及换热性能模拟研究[J]. 钻探工程, 2024, 51(5): 59-67.
[8] YANG C, GUAN Y, KANG Z. Numerical investigation of riser vibration induced by ice-water two-phase flow in icy regions by SPH method[J]. Ocean Engineering, 2024, 306: 117942.
[9] MI S, GENG S, CAI L, et al. Investigation on the thermal-fluidic characteristics of ice slurry in sinusoidal corrugated plate heat exchangers[J]. Case Studies in Thermal Engineering, 2024, 55: 104176.
[10] REZAEI M, PAKRAVAN H A. Numerical study of ice slurry flow and heat transfer in successive U-bends as part of tubular heat exchangers[J]. International Journal of Thermal Sciences, 2023, 191: 108357.
[11] 陈尚海. 极地船海水系统冰晶生长特性研究[D]. 武汉: 武汉理工大学, 2017.
[12] 徐陈芸. 冰浆在板式换热器中的流动与传热研究[D]. 武汉: 华中科技大学, 2012.
[13] 马克波, 张静雅, 邵雪奎. 冰浆在板式换热器中的流动与传热特性研究[J]. 资源信息与工程, 2022, 37(1): 121-126,132.
[14] 罗梁. 极地船舶海水管路系统中海冰两相流冰晶动力学行为规律研究[D]. 武汉: 武汉理工大学, 2020.
[15] ĆOJBAŠIĆ Ž, BRKIĆ D. Very accurate explicit approximations for calculation of the Colebrook friction factor[J]. International Journal of Mechanical Sciences, 2013, 67: 10-13.