为实现2050年国际海事组织(IMO)提出的温室气体净零排放目标,氨作为一种零碳燃料,在船舶领域有巨大的应用潜力。本文介绍氨燃料发动机的发展现状、排放特性以及排放控制技术。与传统燃料相比,氨燃料发动机会产生一氧化二氮(N2O)和未燃氨(NH3)非常规排放物。相比进气道喷射氨的方式,采用高压缸内直喷氨的方式可以减少82%左右的未燃NH3排放。N2O在发动机排温范围内很难通过后处理技术去除,因此主要通过发动机性能参数优化的方式控制N2O排放在较低水平(≤20×10–6),再通过选择性催化还原(SCR)技术去除NOX和逃逸NH3以满足IMO TierIII排放法规要求。
To achieve the greenhouse gas net-zero emissions target set by the International Maritime Organization (IMO) for 2050, ammonia, as a zero-carbon fuel, has significant potential for application in the maritime sector. This article introduces the current development of ammonia-fueled engines, their emission characteristics, and emission control technologies. Compared to traditional fuels, ammonia-fueled engines generate unconventional emissions such as nitrous oxide (N2O) and unburned ammonia (NH3). Compared to ammonia injection in the intake manifold, using high-pressure in-cylinder direct injection of ammonia can reduce unburned NH3 emissions by approximately 82%. N2O is difficult to remove through after-treatment technologies within the engine's exhaust temperature range. Therefore, N2O emissions are primarily controlled at a low level (≤20×10–6) by optimizing engine performance parameters, followed by the use of Selective Catalytic Reduction (SCR) technology to remove NOX and escaping NH3 to comply with IMO Tier III emission regulations.
2025,47(19): 133-139 收稿日期:2024-12-26
DOI:10.3404/j.issn.1672-7649.2025.19.021
分类号:U677.3; TK46+4
基金项目:上海市2022年度“科技创新行动计划”资助项目(22QB1406300)
作者简介:田新娜(1987-),女,博士,高级工程师,研究方向为发动机排放后处理
参考文献:
[1] 甘少炜. 新能源和替代燃料船舶发展现状与展望[J]. 交通运输部管理干部学院学报, 2023, 33(4): 32-35.
[2] GIDDEY S, BADWAL S P S, KULKARNI A. Review of electrochemical ammonia production technologies and materials[J]. International Journal of Hydrogen Energy, 2013, 38(34): 14576-14594.
[3] KOBAYASHI H, HAYAKAWA A, SOMARATHNE K D, et al. Science and technology of ammonia combustion[J]. Proceedings of the Combustion Institute, 2019, 37(1): 109-133.
[4] HEYWOOD J B. Automotive engines and fuels: A review of future options[J]. Progress in Energy and Combustion Science, 1981, 7(3): 155-184.
[5] BLARIGAN P V. Advanced internal combustion engine research[J]. 2000.
[6] 衣玥, 尹燕旭, 沈浩昱, 等. 氨燃料在内燃机的应用技术综述[J]. 内燃机与配件, 2023(3): 115-22.
[7] ZHOU X, LI T, WANG N, et al. Pilot diesel-ignited ammonia dual fuel low-speed marine engines: A comparative analysis of ammonia premixed and high-pressure spray combustion modes with CFD simulation[J]. Renewable and Sustainable Energy Reviews, 2023, 173: 113108.
[8] STEPHANIE F, STEPHAN G. Development of a 3D-Computational fluid dynamics model for a full optical high-pressure dual-fuel engine[J]. SAE International Journal of Engines, 2020, 13(2): 241-252.
[9] LI T, ZHOU X, WANG N, et al. A comparison between low- and high-pressure injection dual-fuel modes of diesel-pilot-ignition ammonia combustion engines[J]. Journal of the Energy Institute, 2022, 102: 362-373.
[10] GARCIA A. WinGD and CMB. TECH co-develop large ammonia-fuelled engines [Z]. 2023.
[11] ALDER I. 瓦锡兰推出全球首个基于四冲程发动机的氨解决方案, 继续引领船舶脱碳进程 [Z]. 2023.
[12] SøHOLT N. Groundbreaking First Ammonia Engine Test Completed [Z]. 2023.
[13] 中国船舶七一一所. 冲刺四季度丨我国首台高性能船用氨柴双燃料中速机通过CCS型式认证 [Z]. 2024.
[14] 文争. 2024年全球及中国氨燃料动力船舶行业产业链图谱、订单量、企业竞争格局及发展趋势研判: “双碳战略”背景下, 氨燃料动力船舶已成为全球船企争相研究的焦点 [Z]. 2024-11-01.
[15] 李健为. 氨/柴油双燃料发动机燃烧与排放特性及调控规律的试验研究 [D]. 武汉: 华中科技大学, 2023.
[16] LEE G W, SHON B H, YOO J G, et al. The influence of mixing between NH3 and NO for a De-NOx reaction in the SNCR process[J]. Journal of Industrial and Engineering Chemistry, 2008, 14(4): 457-467.
[17] MATHIEU O, PETERSEN E L. Experimental and modeling study on the high-temperature oxidation of Ammonia and related NOx chemistry[J]. Combustion and Flame, 2015, 162(3): 554-570.
[18] ZHANG Z, LONG W, DONG P, et al. Performance characteristics of a two-stroke low speed engine applying ammonia/diesel dual direct injection strategy [J]. Fuel, 2023, 332.
[19] REITER A J, KONG S C. Combustion and emissions characteristics of compression-ignition engine using dual ammonia-diesel fuel[J]. Fuel, 2011, 90(1): 87-97.
[20] YOUSEFI A, GUO H, DEV S, et al. Effects of ammonia energy fraction and diesel injection timing on combustion and emissions of an ammonia/diesel dual-fuel engine [J]. Fuel, 2022, 314.
[21] FORSTER P, STORELVMO T, ARMOUR K, et al. The Earth’s Energy Budget, Climate Feedbacks, and Climate Sensitivity [M]//MASSON-DELMOTTE V, ZHAI P, PIRANI A, et al. Climate Change 2021: The Physical Science Basis Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA; Cambridge University Press. 2021: 923–1054.
[22] 王涵啸. SCR脱硝催化剂改性协同催化分解N2O的实验研究 [D]. 北京: 华北电力大学, 2021.
[23] NIKI Y, NITTA Y, SEKIGUCHI H, HIRATA K. Diesel fuel multiple injection effects on emission characteristics of diesel engine mixed ammonia gas into intake air[J]. Journal of Engineering for Gas Turbines and Power, 2019, 141(6): 1-7.
[24] CHEN R, LI T, WANG X, et al. Engine-out emissions from an ammonia/diesel dual-fuel engine – The characteristics of nitro-compounds and GHG emissions [J]. Fuel, 2024, 362.
[25] MI S, WU H, PEI X, et al. Potential of ammonia energy fraction and diesel pilot-injection strategy on improving combustion and emission performance in an ammonia-diesel dual fuel engine [J]. Fuel, 2023, 343.
[26] SHIN J, PARK S. Numerical analysis and optimization of combustion and emissions in an ammonia-diesel dual-fuel engine using an ammonia direct injection strategy [J]. Energy, 2024, 289.
[27] ZHOU X, LI T, CHEN R, et al. Ammonia marine engine design for enhanced efficiency and reduced greenhouse gas emissions[J]. Nature Communications, 2024, 15(1): 67-69.
[28] 曾维武, 王廷勇, 赵超, 等. 氨燃料船舶氨气处理技术探索 [J]. 中国修船, 2023, 36(1): 46-50.
[29] 莫杰. 船舶氨燃料发动机N2O后处理技术研究 [D]. 哈尔滨: 哈尔滨工程大学, 2023.
[30] OHNISHI C, IWAMOTO S, INOUE M. Direct decomposition of nitrous oxide in the presence of oxygen over iridium catalyst supported on alumina[J]. Chemical Engineering Science, 2008, 63(20): 5076-5082.
[31] PASHA N, LINGAIAH N, BABU N S, et al. Studies on cesium doped cobalt oxide catalysts for direct N2O decomposition in the presence of oxygen and steam[J]. Catalysis Communications, 2008, 10(2): 132-136.
[32] WU X, DU J, GAO Y, et al. Progress and challenges in nitrous oxide decomposition and valorization[J]. Chemical Society Reviews, 2024, 53(16): 8379-8423.
[33] COQ B, MAUVEZIN M, DELAHAY G, et al. The simultaneous catalytic reduction of NO and N2O by NH3 using an Fe-zeolite-beta catalyst[J]. Applied Catalysis B: Environmental, 2000, 27(3): 193-198.
[34] ZHANG X, SHEN Q, HE C, et al. N2O catalytic reduction by NH3 over Fe-zeolites: Effective removal and active site[J]. Catalysis Communications, 2012, 18: 151-155.