真实海洋环境下,舰船燃气轮机处于复杂多变的运行工况。为探究变工况对压气机叶栅流动性能的影响,以某型舰用燃气轮机高压压气机某级叶片作为研究对象,等值拉伸构建模型,通过数值模拟的方法,研究了来流冲角变化对压气机叶栅整体性能及流动结构的作用效果。结果表明,角区堆积的低能流体和涡系结构的相互作用是导致叶栅流动损失的主要原因。叶栅总压损失呈现先减小后增大的趋势,但在负冲角范围(设计工况附近)总压损失保持在0.028附近,处于较低水平。此时叶栅流动结构并未发生显著改变。随着来流冲角不断增大,吸力面分离泡及角区分离起始位置向前缘移动,分离程度及范围不断加剧扩大。当来流冲角为+6°时,叶栅处于失速状态,叶栅通道内的流场呈现出强分离状态,在叶片吸力面上出现较大范围分离涡,马蹄涡也于端壁处形成一组新的鞍点。
In the real marine environment, the gas turbine of the warship is in complex and changeable operating conditions. To explore the influence of variable working conditions on the flow performance of compressor cascade, a certain type of marine gas turbine high-pressure compressor blade was taken as the research object, and the effect of the change of incoming flow angle on the overall performance and flow structure of the compressor cascade was studied by numerical simulation. The results show that the interaction between the low-energy fluid and the vortex structures accumulated in the corner region is the main reason for the flow loss of the cascade. The total pressure loss of the cascade decreases first and then increases. But the total pressure loss in the negative angle of attack (near the design condition) remains around 0.028, which is at a low level. At this time, the flow structure of the blade grid did not change significantly. With the increasing angle of incoming flow, the starting position of the suction surface separation bubble and corner separation moved to the front edge, and the degree and scope of separation continued to intensify. When the incoming flow angle is +6°, the cascade is in a stall state, and the flow field in the blade grid channel shows a strong separation state, and a large range of separation vortices appear on the suction surface of the blades, and the horseshoe vortex also forms a new set of saddle points at the endwall.
2025,47(19): 150-156 收稿日期:2024-12-10
DOI:10.3404/j.issn.1672-7649.2025.19.024
分类号:U66; TH45
基金项目:两机重大专项基础研究项目(J2019-I-0012)
作者简介:李可心(2000-),女,硕士研究生,研究方向为叶轮机械气动力学
参考文献:
[1] 陈懋章. 中国航空发动机高压压气机发展的几个问题[J]. 航空发动机, 2006, 32(2): 5-11.
[2] 胡骏, 吴铁鹰, 曹人靖. 航空叶片机原理[M]. 北京: 国防工业出版社, 2006.
[3] 于贤君, 侯景韬, 安广丰. 转子尖部角区分离对高负荷压气机性能影响的实验与数值研究[J]. 推进技术, 2025, 46(2): 72-83.
[4] 李晓东, 孙鹏, 傅文广. 端壁凹槽控制扩压叶栅角区分离的数值研究[J]. 工程热物理学报, 2022, 43(2): 316-323.
[5] 姚飞, 刘玉强, 李宗明. 轮毂局部修型对轴流压气机转子叶根角区分离的抑制机理研究[J]. 工程热物理学报, 2022, 43(12): 3235-3243.
[6] 吴宛洋, 钟兢军. 高亚声速时叶尖小翼®对压气机叶栅泄漏流动的影响[J]. 国防科技大学学报, 2022, 44(2): 162-178.
[7] 王军, 李志昂, 王威. 分流叶片位置对平面叶栅流动分离的影响[J]. 华中科技大学学报(自然科学版), 2021, 49(12): 6-10+33.
[8] THIAM A, WHITTLESEY R, WARK C, et al. Corner separation and the on-set of stalls in an axial compressor [C]//38th Fluid Dynamics Conference and Exhibit, 2008.
[9] GBADEBO S A, CUMPSTY N A, HYNES T P. Three-dimensional separations in axial compressors[J]. Journal of Turbomachinery, 2005, 127(2): 331-339.
[10] 孙伟文, 王巍, 王晓放. 轴流压气机性能预测及喘振/堵塞流量边界分析[J]. 工程热物理学报, 2024, 45(3): 733-740.
[11] WEBER A, SCHREIBER H A, STEINERT F W. 3-D transonic flow in a compressor cascade with shock-induced corner stall[J]. Journal of Turbomachinery, 2002, 124(3): 358-366.
[12] GBADEBO S A, CUMPSTY N A, HYNES T P. Three-dimensional separations in axial compressors[J]. Journal of Turbomachinery, 2005, 127(2): 457-469.
[13] BESELT C, ECK M, PEITSCH D. Three-dimensional flow field in a highly loaded compressor cascade [J]. Journal of Turbomachinery, 2014, 136(10): V02DT44A018-V02DT44A018.
[14] MA W, OTTAVY X, LU L P, et al. Experiment study of comer stall in a linear compressor cascade[J]. Chinese Journal of Aeronautics, 2011, 24(3): 235-242.
[15] 孙忠民, 鞠凤鸣, 韩万金. 重燃压气机第7级静叶栅气动性能的试验研究[J]. 汽轮机技术, 2017, 59(5): 357-360.
[16] 陈浮, 赵桂杰, 宋彦萍, 等. 冲角变化对弯掠压气机叶栅壁面静压分布的影响[J]. 推进技术, 2004(6): 521-525.
[17] 宋彦萍, 刘振德, 陈浮. 采用弯-掠叶片的压气机叶栅变冲角性能研究[J]. 推进技术, 2004(5): 411-415.
[18] 陈浮, 赵桂杰, 宋彦萍. 冲角对不同掠型压气机叶栅扩压因子的影响[J]. 热能动力工程, 2005, 20(2): 116-119.