针对低信噪比和干扰线谱情况下,利用方位和频率测量信息解算目标运动要素存在收敛时间长和解算结果不可靠性的问题。本文提出一种多普勒匹配搜索的快速TMA(Target Motion Analysis)方法,通过对多普勒搜索补偿和相干累积,当目标要素与实际情况完全匹配时,只有目标线谱能得到相干叠加,而噪声和其他干扰线谱均无法得到增强。实验结果表明,该方法无需事先辨认目标线谱和干扰线谱,通过相干累积提升了信噪比,可以快速匹配得到目标运动要素,能适应低信噪比条件且解算收敛速度快,具有较好的应用前景。
In the case of low signal-to-noise ratio and interference line spectrum, there is a problem of long convergence time and unreliable calculation results when using azimuth and frequency measurement information to solve target motion elements, this paper proposes a fast TMA method for target motion parameter estimation using azimuth and frequency measurement information. By compensating for doppler search and coherent accumulation, only the target spectral lines can be coherently summed when the target motion parameters match the actual situation, while noise and other interference spectral lines cannot be enhanced. The experimental verification results show that the proposed method does not need to identify the target line spectrum and interference line spectrum in advance, improves the signal-to-noise ratio through coherent accumulation, and can quickly match the target motion elements. It has the characteristics of fast convergence and adaptation to low signal-to-noise ratio conditions, and has strong practical value.
2025,47(19): 162-167 收稿日期:2024-9-13
DOI:10.3404/j.issn.1672-7649.2025.19.026
分类号:TB568
作者简介:徐景峰(1986-),男,博士,副教授,研究方向为水声定位技术
参考文献:
[1] PASSERIEUX J M, PILLON D, BLANC P. Target motion analysis with bearings and frequencies measurement via instrumental variable estimator[J]. IEEE, 1989, 2: 645-648.
[2] 刘健, 刘忠, 玄兆林. 一种基于方位-频率测量的被动声呐TMA算法分析[J]. 声学与电子工程, 2005, 80(4): 1-3.
LIU J, LIU Z, XUAN Z L. Analysis of a passive sonar TMA algorithm based on azimuth frequency measurement[J]. Acoustics and Electronic Engineering, 2005, 80(4): 1-3.
[3] 刘健, 姚海波. 基于方位频率 TMA 的可观测性分析[J]. 电光与控制, 2005, 12(6): 29-31.
[4] 李关防, 崔杰, 袁富宇. 基于线谱瞬时频率估计的被动声纳目标运动分析[J]. 兵工学报, 2017, 38(7): 1395-1401.
[5] 赵建昕, 徐国军, 过武宏. 方位和多普勒频移联合的目标要素估计[J]. 舰船科学技术, 2016, 38(5): 105-110.
ZHAO J X, XU G J, GUO W H. Estimation of target elements joining bearings with Doppler frequency shift of line spectrum[J]. Ship Science and Technology, 2016, 38(5): 105-110.
[6] 官善政, 陈韶华, 陈川. 基于粒子群优化算法的目标运动参数估计[J]. 水下无人系统学报, 2018, 26(5): 409-414.
[7] 王潇. 基于QGA的多普勒频移目标运动分析[D]. 哈尔滨: 哈尔滨工程大学, 2021.
[8] 王顺杰, 野学范, 张玉玲. 基于方位-频率解算目标运动要素的航路选择[J]. 火力与指挥控制, 2023, 48(2): 149-153.
[9] 孙大军, 张艺翱, 滕婷婷, 等. 单站水下方位频率机动目标运动分析方法[J]. 声学学报, 2024, 49(4): 683-695.
[10] 姬托, 李然威, 朱伟, 等. 方位-频率TMA算法研究及其应用场景分析[C]//酒泉: 2020年中国西部声学学术交流会, 2020.
[11] 刘忠, 邓聚龙. 等速运动观测站纯方位系统的可观测性[J]. 火力与指挥控制, 2004, 29(6): 51-54.
[12] 张翔. 水声通信中多普勒频移补偿的仿真研究[J]. 系统仿真学报, 2005, 17(5): 1172-1174.