为了提升舰船应对极端环境的能力,避免因通信不良引发的安全隐患和决策失误,确保各类海上任务顺利执行,研究灾害天气下舰船应急通信系统的稳定控制方法。分析灾害天气对天线姿态、信号传输和设备安全的物理影响,根据分析结果采集相关数据,从中提取风险因子作为风险量化指标,利用多级阈值加权融合法划分应急通信系统风险等级,当处于高风险等级且天线姿态偏差超限时,采用基于PID控制器的天线姿态自适应调整策略,通过伺服系统实时调整天线姿态偏差;当处于高风险等级且雨衰风险超限时,实施通信频段动态切换策略,通过雨衰计算和频段优选规避高衰减频段;当处于高风险等级且电磁冲击风险超限时,启动网络拓扑动态重构策略,基于链路质量权重和最小生成树算法重建最优通信路径。实验结果表明,该方法能够应对各类灾害天气对舰船应急通信系统稳定性产生的影响,BER可控制在0.20以下。
To enhance the capability of naval vessels to withstand extreme environments, prevent safety hazards and decision-making errors caused by poor communications, and ensure the smooth execution of all maritime missions, this study investigates stable control methods for emergency communication systems aboard ships during severe weather conditions. Analyze the physical impacts of severe weather on antenna orientation, signal transmission, and equipment safety. Based on these findings, collect relevant data to extract risk factors as quantitative indicators. Employ a multi-level threshold weighted fusion method to classify emergency communication system risk levels. When operating at high risk levels with antenna orientation deviations exceeding limits, implement an adaptive adjustment strategy using PID controllers to correct deviations in real-time via servo systems. When operating at high risk with excessive rain fade risk, implement a dynamic communication band switching strategy. Avoid high-attenuation bands through rain fade calculations and band optimization. When operating at high risk with excessive electromagnetic impulse risk, activate a dynamic network topology reconstruction strategy. Rebuild optimal communication paths based on link quality weighting and the minimum spanning tree algorithm. Experimental results demonstrate that this method effectively mitigates the impact of various severe weather conditions on the stability of ship emergency communication systems, maintaining BER below 0.20.
2025,47(19): 180-184 收稿日期:2025-4-13
DOI:10.3404/j.issn.1672-7649.2025.19.029
分类号:U665.25
基金项目:浙江省科技厅软科学研究计划项目(2025C25009)
作者简介:吕凤军(1976-),男,副研究员,研究方向为交通运输安全、应急管理
参考文献:
[1] 郁榴华, 潘慧君, 林艳, 等. 船舶类量化神经网络自适应运动控制方法研究[J]. 舰船科学技术, 2024, 46(15): 34-39.
YU L H, PAN H J, LIN Y, et al. Research on adaptive motion control method of ship course quantization neural network[J]. Ship Science and Technology, 2024, 46(15): 34-39.
[2] 时光志, 石峰, 李萌, 等. 数智化技术在大型LNG运输船上的应用[J]. 船舶设计通讯, 2024(2): 28-33.
[3] 刘逸飞. 基于北斗卫星通信技术的远洋船舶通信自动化控制系统[J]. 电子设计工程, 2024, 32(5): 150-155.
[4] 吴科献, 金华标, 王琪, 等. 基于Opus算法的船舶音频传输系统设计[J]. 船海工程, 2024, 53(4): 18-23.
[5] 杨何伍, 周昕. 基于STC8的无人船遥控系统通讯实现[J]. 广州航海学院学报, 2022, 30(1): 1-4+8.
[6] 杨廷基. 高速船舶外通系统设计与性能优化[J]. 船舶物资与市场, 2024, 32(5): 71-73.
[7] 杨理华, 张翔鹏, 刘丽滨, 等. 强环境噪声下船用耳罩语音增强仿真与验证[J]. 船海工程, 2023, 52(1): 87-92.