机载弹药储运方式及效能,是航母设计需考虑的要素之一。在分析传统人力型、创新无人型机载弹药储运方式的基础上,设定一致的航母机载弹药储运空间单元及作业参数,用FlexSim软件仿真对比了2种机载弹药储运方式的弹药存储与转运效能。结果表明,传统人力型机载弹药储运方式,具有高的弹药存储效能和较高的弹药机械化转运效率,防爆货梯是该方式优化的一个关键设计要素;创新无人型机载弹药储运方式,具有高的弹药转运效率和较高的弹药存储效能,符合未来少人化、无人化新型航母平台的发展需要,且制式托盘是该方式优化设计的关键。
The storage & transportation mode and efficiency of aviation ammunition are one of the key factors to be considered in the design of aircraft carriers. On the basis of the analysis of the traditional human-based and innovative unmanned aviation ammunition storage and transportation methods, the consistent aviation ammunition storage & transportation space units and operating parameters of the aircraft carrier were set, and the ammunition storage and transfer efficiency of the two aviation ammunition storage & transportation modes were simulated and compared by FlexSim software.The results show that the traditional human-powered aviation ammunition storage & transportation mode has higher ammunition storage efficiency and high ammunition mechanized transfer efficiency, and the explosion-proof cargo elevator is a key design element of this mode. The innovative unmanned aviation ammunition storage & transportation mode has higher ammunition transfer efficiency and high ammunition storage efficiency, which meets the development needs of new aircraft carrier platforms with fewer people or even unmanned in the future, and the standard pallet is the key to the optimal design of this method.
2025,47(19): 201-205 收稿日期:2025-2-28
DOI:10.3404/j.issn.1672-7649.2025.19.033
分类号:U66; TJ089
基金项目:国家自然科学基金面上项目(62372416)
作者简介:李冠峰(1974-),男,研究员,研究方向为机电产品研制
参考文献:
[1] 史文强, 李彦庆, 陈练. 航母的航空弹药贮运作业解析[J]. 舰船科学技术, 2013, 35(6): 136-141.
SHI W Q, LI Y Q, CHEN L. Analysis for the ordnance handling process aboard aircraft carrier[J]. Ship Science and Technology, 2013, 35(6): 136-141.
[2] 赵晓春. 美国航母弹药库自动化贮运技术发展及应用分析[J]. 舰船科学技术, 2013, 35(8): 154-157.
ZHAO X C. Analysis of development and application for automated ammunitions stowage and retrieval techniques in US carrier[J]. Ship Science and Technology, 2013, 35(8): 154-157.
[3] 刘彩云. 航母弹药转运系统的仿真及优化研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.
[4] 张斌. 航母航空弹药布局及转运调度优化研究[D]. 哈尔滨: 哈尔滨工程大学, 2021.
[5] 陈练, 杜易洋, 周晗. 美国海军“福特”级航母研制思考及启示[J]. 舰船科学技术, 2022, 44(9): 186-189.
CHEN L, DU Y Y, ZHOU H. The development problems of American Navy Ford-class carriers and enlightenment to our country[J]. Ship Science and Technology, 2022, 44(9): 186-189.
[6] 李冠峰. 弹药安全上舰设计分析[J]. 舰船科学技术, 2022, 44(2): 166-169.
LI G f. Design analysis about ammunition boarding safely[J]. Ship Science and Technology, 2022, 44(2): 166-169.
[7] Aviation ordnance man[M]. NAVEDTRA 14313. Naval Education and Training Professional Development and Technology Center, 2001.
[8] GEORGE ALLISON. (2017, September 5). Automation at sea, a look at the weapons handling system aboard HMS Queen Elizabeth . https://ukdefencejournal.org.uk.
[9] 李冠峰, 许世磊, 秦爱中. 弹药海上补给单元设计分析[J]. 舰船科学技术, 2025, 47(1): 185-189.
LI G F, XU S L, QIN A Z. Design analysis about ammunition unit load for underway replenishment[J]. Ship Science and Technology, 2025, 47(1): 185-189.
[10] MICHAEL FABEY. (2021, December 27). Final carrier ford advanced weapons elevator turned over to crew. JANES. https://www.janes.com.