内河航运在物流运输中扮演重要的角色。本文以1艘96 TEU内河集装箱船为研究对象,采用雷诺平均纳维-斯托克斯(RANS)方法,对其实尺度下在2种不同断面航道下的水动力性能进行模拟和预报,并对阻力、船体绕流场、自由液面兴波及船体压力分布进行分析和对比,以揭示实尺度条件下2种航道断面形状对阻力、流场特性及压力变化的影响。结果表明,在航速6 km/h时,航道2中的集装箱船阻力在水深超过5 m后趋于稳定,船体周围流场与兴波变化较小,浅水效应明显减弱;在相同水深条件下,较窄的航道1航行阻力较高,且阻力变化更为敏感,尤其在水深较浅时,浅水效应更加显著。
Inland waterway shipping plays a crucial role in logistics transportation. This paper focuses on a 96TEU inland container ship, using the Reynolds-averaged Navier-Stokes (RANS) method to simulate and predict its hydrodynamic performance at full scale in two different cross-sectional channels. The study analyzes and compares resistance, local flow field, free surface wave generation, and pressure distribution to reveal the impact of channel cross-sectional shapes on resistance, flow field characteristics, and pressure changes under full-scale conditions. The results indicate that at 6 km/h, the resistance of the container ship in channel 2 stabilizes when the water depth exceeds 5 meters, with minimal changes in the surrounding flow field and wave generation, and a significant reduction in shallow water effects. Under the same water depth conditions, the narrower channel 1 exhibits higher resistance, with more sensitive changes in resistance, especially at shallow depths, where the shallow water effects are more pronounced.
2025,47(21): 1-8 收稿日期:2025-1-8
DOI:10.3404/j.issn.1672-7649.2025.21.001
分类号:U671.99
基金项目:国家自然科学基金项目(U24A20197,52171263,52201367);冲击与安全工程教育部重点实验室(宁波大学)开放课题(CJ202401)
作者简介:刘湘栋(2001-),男,硕士研究生,研究方向为船舶水动力性能预报
参考文献:
[1] 朱学秀, 曹伦, 焦芳芳. 加快内河航运高质量发展有效降低全社会物流成本[J]. 中国水运, 2024(13): 24-26.
[2] ELSHERBINY K, TERZIEV M, TEZDOGAN T, et al. Numerical and experimental study on hydrodynamic performance of ships advancing through different canals[J]. Ocean Engineering, 2020, 195: 106696.
[3] DU P, OUAHSINE A, SERGENT P, et al. Resistance and wave characterizations of inland vessels in the fully-confined waterway[J]. Ocean Engineering, 2020, 210: 107580.
[4] HADI E S, TUSWAN T, AZIZAH G, et al. Influence of the canal width and depth on the resistance of 750 DWT Perintis ship using CFD simulation[J]. Brodogradnja: An International Journal of Naval Architecture and Ocean Engineering for Research and Development, 2023, 74(1): 117-144.
[5] TERZIEV M, TEZDOGAN T, INCECIK A. Modelling the hydrodynamic effect of abrupt water depth changes on a ship travelling in restricted waters using CFD[J]. Ships and Offshore Structures, 2021, 16(10): 1087-1103
[6] 易信宇, 王丽铮, 汪皓, 等. 乌江限制性航道船舶快速性预报研究[J]. 武汉理工大学学报(交通科学与工程版), 2024, 48(5): 909-915.
YI X Y, WANG L Z, WANG H, et al. Research on ship resistance performance in restricted channel of Wujiang River[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2024, 48(5): 909-915.
[7] 徐双喜, 林江萍, 董威, 等. 浅水航道船舶阻力计算方法研究[J]. 武汉理工大学学报(交通科学与工程版), 2020, 44(3): 414-417+422.
XU S X, LIN J P, DONG W, et al. Study on calculation method of ship resistance shallow water[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2020, 44(3): 414-417+422.
[8] 俞中奇, 袁章新, 周超. 限制性Ⅲ级航道船舶阻力试验研究[J]. 上海船舶运输科学研究所学报, 2014, 37(4): 23-27+49.
YU Z Q, YUAN Z X, ZHOU C. Resistance performance of ships in grade Ⅲ restricted channels[J]. Journal Of Shanghai Ship and Shipping Research Institute, 2014, 37(4): 23-27+49.
[9] 吴俊, 刘维, 马希钦, 等. 中间渠道船舶航行阻力计算方法与试验[J]. 水运工程, 2022(12): 84-91.
WU J, LIU W, MA X Q, et al. Calculation method and test of ship navigation resistance in intermediate channel[J]. Port & Waterway Engineering, 2022(12): 84-91.
[10] 冯伟. 通航建筑物中间渠道断面系数和船舶阻力关系研究[D]. 重庆: 重庆交通大学, 2023.
[11] 肖应彪. 乌江通航隧洞尺度与通行船舶参数关联性试验研究[D]. 武汉: 武汉理工大学, 2020.
[12] HIRT C W, NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1): 201-225
[13] PERIC M, MUZAFERIJA S. Computation of free surface flows using interface-tracking and interface-capturing methods[M]. In: Mahrenholtz, O. , Markiewicz, M. (Eds. ), Nonlinear Water Wave Interaction, Computational Mechanics Publications, 1999.
[14] 邹璐, 邹早建, 夏立, 等. 近岸航行邮轮水动力数值分析研究[J]. 中国造船, 2020, 61(S2): 120-131.
ZOU L, ZOU Z J, XIA L, et al. Numerical analysis of hydrodynamic quantities of cruise ship moving along bank wall[J]. Shipbuilding of China, 2020, 61(S2): 120-131.
[15] ITTC-recommended procedures and guidelines. Guidelines on use of RANS tools for ship manoeuvring prediction[S]. 2017.
[16] ITTC-recommended procedures and guidelines. Uncertainty analysis in CFD verification and validation methodology and procedures[S]. 2017.
[17] 许光祥, 范小寒, 马超峰, 等. 基于澜沧江实船试验对兹万科夫船舶阻力计算方法的修正[J]. 船海工程, 2023, 52(1): 56-61.
XU G X, FAN X H, MA CH F, et al. Modification of the Зваников ship resistance calculation method based on real ship test in Lancang river[J]. Ship & Ocean Engineering, 2023, 52(1): 56-61.