随着压载水公约的生效,全球船舶压载水管理系统进入规范化阶段。国际海事组织(International Maritime Organization,IMO)与美国海岸警卫队(United States Coast Guard,USCG)分别制定了压载水管理系统法规,两者在排放标准、型式认可和港口国检查等方面存在显著差异。通过对IMO与USCG法规的对比分析,探讨两者在型式认可程序、陆基试验、实船试验、毒性试验、腐蚀试验及环境试验等方面的具体要求。分析表明,USCG的实船试验和PSC检查要求更为严格。尽管IMO与USCG在法规上存在差异,但两者逐渐趋于一致化,压载水供应商需按照最高要求开展系统设计及认证,以同时满足IMO与USCG的认可标准。同时对未来压载水管理系统法规的发展趋势进行展望,强调了船舶操作能力和系统稳定性的重要性。
With the entry into force of ‘Ballast Water Convention’, the global ship ballast water management system has entered a standardized stage. The International Maritime Organization (IMO) and the United States Coast Guard (USCG) have respectively formulated regulations for the ballast water management system, and there are significant differences between the two in terms of discharge standards, type approval, and Port State Control (PSC). By comparing and analyzing the regulations of IMO and USCG, specific requirements for type approval procedures, land-based test, shipboard test, toxicity test, corrosion test, and environmental test were explored. Analysis indicates that the USCG enforces more stringent requirements for shipboard test and PSC. Although there are regulatory differences between IMO and USCG, the two are gradually aligning. Ballast water suppliers are required to design their systems and type approval according to the highest standards to meet the criteria of both IMO and USCG. Additionally, the future development of ballast water management system regulations is prospected. Emphasizing the importance of ship operational capabilities and system stability.
2025,47(21): 9-13 收稿日期:2025-2-14
DOI:10.3404/j.issn.1672-7649.2025.21.002
分类号:U662.1
基金项目:国家重点研发计划项目(2022YFF0610403)
作者简介:张晓雯(1989-),女,硕士,高级工程师,研究方向为海洋环境保护和船舶压载水处理技术
参考文献:
[1] IMO. International convention for the control and management of ships' ballast water and sediments[S]. 2004.
[2] 王妮, 刘铭辉, 张波, 等. 《国际船舶压载水及沉积物管理与控制公约》解读及履约事项综述[J]. 天津科技, 2019, 46(11): 41-46.
[3] 刘丽红, 盛伟群, 王慧芳. 船舶压载水领域标准现状及发展分析[J]. 船舶标准化工程师, 2021, 54(2): 5-10.
[4] 温迪雅, 姜玥璐, 陈道毅. 船舶压载水处理技术研究与应用进展[J]. 水处理技术, 2022, 48(11): 14-20
[5] IMO. BWM. 2/Circular. 34/Rev. 13 list of ballast water management systems that make use of active substances which received basic and final approval [S]. 2024.
[6] USCG. BWMS type approval certificates [EB/OL]. https://www.dco.uscg.mil/Our-Organization/Assistant-Commandant-for-Prevention-Policy-CG-5P/Commercial-Regulations-standards-CG-5PS/Marine-Safety-Center-MSC/Ballast-Water/TACs/, 2025-1-15/2025-1-26.
[7] 刘亮, 吴惠仙, 袁林, 等. 基于国际公约要求的压载水生物检测技术[J]. 上海海洋大学学报, 2018, 27(3): 460-467.
[8] EFI T, EVAN D. Technologies for ballast water treatment: A review[J]. Journal of Chemical Technology and Biotechnology, 2010, 85(1): 19-32.
[9] NSF International. Generic Protocol for the verification of ballast water treatment technology[R]. EPA/600/R-10/146. Washington: U. S. Environmental Protection Agency, 2010.
[10] GERT H, GITTE P, REMI M, et al. Inherent lack of CMFDA/FDA staining in certain algae and its implication for ballast water testing [J]. Marine Pollution Bulletin, 2023, 194(Pt B): 115312.
[11] SUBHASH S S, ARGA C A, VENKAT K. Effect of Hydrodynamic cavitation on zooplankton: A tool for disinfection[J]. Biochemical Engineering Journal, 2008, 42(3): 320-328
[12] 王琼, 刘然, 上官欣欣, 等. 船舶压载水处理系统型式认可试
验水的调配方法[J]. 净水技术, 2023, 42(1): 146-152
[13] DUAN D X, XU F Q, WANG T Y, et al. The effect of filtration and electrolysis on ballast water treatment[J]. Ocean Engineering, 2023, 268: 113301.
[14] 刘然, 王琼, 王慧芳, 等. 压载水处理系统型式认可中添加剂对试验水体特征的影响[J]. 上海海洋大学学报, 2022, 31(1): 191-200.
[15] 朱荧. 臭氧处理船舶压载水过程中形成消毒副产物的研究[D]. 上海: 上海海洋大学, 2021.
[16] IMO. BWM. 2/Circular. 13/Rev. 4 on methodology for information gathering and conduct of work of the GESAMPL-BWWG[S]. 2017.
[17] 王慧芳. 船舶实施压载水公约面临的挑战及可行解决方案[J]. 船舶工程, 2021, 43(10): 62-68.