水翼艇是一种专为高速减阻而开发的新船型。水翼攻角的改变会导致水翼艇阻力及航态发生变化。为探讨水翼攻角对阻力及航态的影响,获得阻力性能最优的水翼方案,本文以某全浸式双水翼艇为对象,基于CFD方法及重叠网格技术进行了不同艏翼攻角方案静水绕流场的数值模拟。研究表明,水翼有效降低了过渡状态及翼航状态下的船舶阻力,同时改善了船舶航态;过渡状态下首部水翼5°攻角时有最佳减阻效果;翼航状态下艏部水翼4°攻角方案有最佳减阻效果;攻角过大反而会增加船舶阻力并增大船舶尾倾。
Hydrofoil crafts are a new type of vessel developed with the aim of reducing resistance at high speeds. Variations of attack angle of the hydrofoils will lead to changes of hull resistance and gesture. In order to explore the influence of attack angles on hull resistance and gesture, and to obtain the optimal scheme with drag performance, this paper numerically simulates one fully-submerged hydrofoil craft equipped with T-shaped hydrofoils in still water based on the CFD method and overlapping grid technology, with the attack angle of bow foil as a variable. It is concluded that, in still water, the numerical results of resistance exhibit good grid convergence during the navigation. The presence of hydrofoils effectively reduces hull resistance and improves navigation state; the condition of optimal resistance reduction under the transition state occurs at an attack angle of 5°, while it occurs at an attack angle of 4° under the foilborne state; excessive attack angle will result to the increase of resistance and aggravate the pitch angle.
2025,47(21): 14-19 收稿日期:2025-2-20
DOI:10.3404/j.issn.1672-7649.2025.21.003
分类号:U671.99
作者简介:沈纪开(2000-),男,硕士研究生,研究方向为船舶水动力性能
参考文献:
[1] 林建国, 许维德. 多体水翼船综述[J]. 船舶工程, 1995(2): 19-23.
LIN J G, XU W D. Preliminary technicat survey of multi-hull hydrofoils[J]. Ship Engineering, 1995(2): 19-23.
[2] 郭军, 扈喆, 陈作钢. 基于STAR-CCM+的滑行艇阻力数值计算[J]. 中国造船, 2022, 63(2): 107-115.
GUO J, HU Z, CHEN Z G. Numerical calculation of resistance performance of planing craft based on software STAR-CCM+[J]. Shipbuilding of China, 2022, 63(2): 107-115.
[3] 杨松林, 高雷. 11.8 m翼滑艇阻力性能的模型实验[J]. 江苏科技大学学报(自然科学版), 2008(2): 6-10.
YANG S L, GAO L. Expermental study on resistance perfomance of an 11.8 meter gliding-hydrofoil craft[J]. Joumal of Jiangsu University of Science and Technology(Natural Science Edition), 2008(2): 6-10.
[4] 唐建飞, 杨帅. 高速艇水翼减阻方案及翼滑艇阻力估算方法[J]. 船舶力学, 2015, 19(Z1): 69-77.
TANG J F, YANG S. Drag reduction regime by hydrofoil and resistance estimation method for gliding-hydrofoil craft[J]. Journal of Ship Mechanics, 2015, 19(Z1): 69-77.
[5] BRIZZOLARA S, SERRA F. Accuracy of CFD codes in the prediction of planing surfaces hydrodynamic characteristics[C]//2nd International Conference on Marine Research and Transportation, 2007 .
[6] 孙华伟. 滑行面形状对滑行艇阻力与航态影响数值分析[D]. 哈尔滨: 哈尔滨工程大学, 2012.
[7] DE MARCO, AGISTINO, et al. Experimental and numerical hydrodynamic analysis of a stepped planing hull[J]. Applied Ocean Research, 2017, 64: 135-154.
[8] 赵核毓, 陈曦, 陆屿, 等. 高速深V滑行艇阻力模型试验及数值对比研究[J]. 水动力学研究与进展(A辑), 2021, 36(4): 591-598.
ZHAO H Y, CHEN X, LU Y, et al. Experimental and numerical study on resistance of Deep-V planing vessels[J]. Chinese Journal of Hydrodynamics, 2021, 36(4): 591-598.
[9] 徐翌森. 基于CFD的多用途船大风浪航行耐波性安全评价[D]. 大连: 大连海事大学, 2021.
[10] KARIM A V, HAMID R G, HASSAN G. Investigation of front hydrofoil position influence on the hydrofoil-assisted craft[J]. Ocean Engineering, 2024(304): 117901.
[11] NIU H M, et al. Enhanced fractional-order nonsingular terminal sliding mode control for fully submerged hydrofoil craft with actuator saturation[J]. Journal of Marine Science and Application, 2025, 1-15