耐压壳体是水下平台的关键承压结构,其可靠性直接影响装备安全性与任务成功率。针对传统可靠性分析方法难以量化含开孔、多肋布局等复杂构型耐压壳体可靠性的问题,提出一种融合有限元仿真与多约束协同建模的系统化分析方法。基于应力-强度干涉理论,构建考虑强度、稳定性及多源不确定性的串联系统可靠性模型,结合实测统计参数修正有限元仿真结果,实现复杂构型壳体的可靠性量化评估。以某AUV耐压壳体为研究对象,实例计算表明,单次任务可靠度为0.999979,全寿命周期总可靠度为0.979554,验证了方法的普适性与工程实用性。该方法可为水下装备耐压壳体的设计提供量化可靠性评估工具,具有一定的工程应用价值。
The pressure hull is a key pressure-bearing structure of underwater platforms, and its reliability directly affects equipment safety and mission success rates. Aiming at the problem that traditional reliability analysis methods are difficult to quantify the reliability of pressure hulls with complex configurations (e.g., openings and multi-rib layouts), this paper proposes a systematic analytical method integrating finite element simulation and multi-constraint collaborative modeling. Based on the stress-strength interference theory, a series system reliability model considering structural strength, stability, and multi-source uncertainties is constructed. By calibrating finite element simulation results with measured statistical parameters, quantitative reliability evaluation of complex-configuration hulls is achieved. Taking an AUV pressure hull as a case study, calculations demonstrate a single-mission reliability of 0.999979 and a total life-cycle reliability of 0.979554, verifying the universality and engineering practicality of the proposed method. This approach provides a quantitative reliability evaluation tool for the design of underwater pressure hulls, offering significant engineering application value.
2025,47(21): 20-26 收稿日期:2025-2-13
DOI:10.3404/j.issn.1672-7649.2025.21.004
分类号:U661
作者简介:冯杰熹(1998-),男,硕士,工程师,研究方向为水下机器人总体与结构设计
参考文献:
[1] 郭永基. 可靠性原理[M]. 北京: 清华大学出版社, 2002.
[2] 中国船级社. 潜水系统和潜水器入级规范[S]. 北京: 人民交通出版社, 2018.
[3] 李强兵, 赵嘉媛. 某型UUV耐压壳体可靠性分析[J]. 机械工程师, 2014(10): 89-90.
LI Q B, ZHANG J Y. Reliability analysis of a UUV pressure-resistant shell[J]. Mechanical Engineer, 2014(10): 89-90.
[4] 严心池. 基于遗传算法的舰船舱段可靠性优化设计[J]. 中国造船, 2007(4): 26-32.
YAN X C. Genetic algorithm-based reliability optimization design of ship cabin section[J]. China Shipbuilding, 2007(4): 26-32.
[5] 吕春雷, 王晓天, 梁超. 水下耐压壳体结构可靠性的设计方法[J]. 船舶力学, 2007(4): 600-608.
LYU C L, WANG X T, LIANG C. Reliability design method of underwater pressure-resistant shell structure[J]. Journal of Ship Mechanics, 2007(4): 600-608.
[6] 马永亮. 考虑腐蚀影响的潜艇结构可靠性研究[D]. 哈尔滨: 哈尔滨工程大学, 2009.
[7] 张伟, 张圣坤, 崔维成, 等. 潜艇耐压圆柱结构的可靠性研究[J]. 中国造船, 2000(4): 37-41.
ZHANG W, ZHANG S K, CUI W C, et al. Reliability study of submarine pressure cylinder structure[J]. China Shipbuilding, 2000(4): 37-41.
[8] 张磊, 胡震. 大深度载人潜水器圆柱形耐压壳体可靠性研究[J]. 中国造船, 2023, 64(5): 29-38.
ZHANG L, HU Z. Study on reliability of cylindrical pressure hull of deep manned submersible[J]. China Shipbuilding, 2023, 64(5): 29-38.
[9] 罗珊, 王纬波. 潜水器耐压壳结构研究现状及展望[J]. 舰船科学技术, 2019, 41(19): 7-16.
LUO S, WANG W B. Research status and prospect of pressure hull structure of submersible[J]. Ship Science and Technology, 2019, 41(19): 7-16.
[10] 李金华, 白德乾, 刘铁生. 载人潜水器耐压壳体结构疲劳可靠性分析[J]. 山东科学, 2019, 32(2): 34-41.
LI J H, BAI D Q, LIU T S. Fatigue reliability analysis of pressure hull structure of manned submersible[J]. Shandong Science, 2019, 32(2): 34-41.
[11] SMITH J, LIU Y, WANG T, et al. Stochastic FEM for underwater pressure hull reliability[J]. Ocean Engineering, 2021, 235: 109352.