由于舰船转动惯量较高,使得舵效响应与航向调整存在显著时间延迟,难以将突变的航向指令转化为加速度受限的平滑指令,导致舵角变化范围较大。为此,设计高速巡逻大惯性舰船航向自适应调节方法。将不确定因子引入舰船舵角的期望运动方程中,引入平滑期望航向角度,将突变的航向指令转化为加速度受限的平滑指令。为抑制惯性系统对突变指令的过激响应,引入平滑期望航向角度并采用二阶滤波算法。通过扩张状态观测器分离漂角并修正,利用漂角估计设计滑膜调节规律,减少系统收敛误差,基于李亚普诺夫稳定性进行参数自适应,确保航向误差收敛,定义饱和函数给出航向稳定性调节规律,实现高效稳定的航向调节。测试结果显示:所提方法降低了艏摇波动的幅度与频率,调节后实际航向角与期望航向角之间的偏差值均极小,舵角变化范围最小。
Due to the high moment of inertia of the ship, there is a significant time delay in the rudder effect response and heading adjustment. It is difficult to convert the sudden heading instructions into smoothing instructions with limited acceleration, resulting in a large range of rudder Angle variation. Therefore, a course adaptive adjustment method for high-speed patrol large-inertia ships is designed. Introduce the uncertainty factor into the expected motion equation of the ship's rudder Angle, introduce the smoothed expected heading Angle, and transform the sudden heading command into an acceleration-constrained smoothed command. To suppress the excessive response of the inertial system to sudden instructions, a smoothed expected heading Angle is introduced and a second-order filtering algorithm is adopted. The drift Angle is separated and corrected by expanding the state observer. The sliding film adjustment law is designed by using the drift Angle estimation to reduce the system convergence error. Parameter adaptation is carried out based on Lyapnov stability to ensure the convergence of heading error. The saturation function is defined to give the heading stability adjustment law to achieve efficient and stable heading adjustment. The test results show that the proposed method reduces the amplitude and frequency of the bow swing. After adjustment, the deviation values between the actual heading Angle and the expected heading Angle are extremely small, and the variation range of the rudder Angle is the smallest.
2025,47(21): 32-36 收稿日期:2025-4-25
DOI:10.3404/j.issn.1672-7649.2025.21.006
分类号:U664.82
作者简介:武雪峥(1991-),女,硕士,讲师,研究方向为电气工程及其自动化
参考文献:
[1] 王伟, 王勇, 周晨光, 等. 基于模糊神经网络PID的无人艇航向控制器研究[J]. 合肥工业大学学报(自然科学版), 2023, 46(4): 458-462.
[2] ZHANG S, ZHOU Y, LIU L, et al. Active vibration control for ship pipeline system based on PI-LQR state feedback[J]. Ocean Engineering, 2024, 310(15): 1-7.
[3] MU D, LI J, WANG G, et al. Research on path following control of unmanned ship based on fast wave inversion disturbance compensation and preset performance[J]. Ocean Engineering, 2024, 304(15): 1-14.
[4] 阳熠恒, 王志博. 混合遗传算法下欠驱动船舶航向保持控制方法[J]. 舰船科学技术, 2024, 46(13): 77-81.
YANG Y H, WANG Z B. A hybrid genetic algorithm based underactuated ship heading maintenance control method[J]. Ship Science and Technology, 2024, 46(13): 77-81.
[5] 夏国清, 孙显信, 任哲达. 基于状态反馈控制器的多无人水面船集群控制[J]. 控制与决策, 2023, 38(7): 2028-2034.
[6] 彭程, 陈俐, 傅圣来. 基于离合器滑摩扭矩估计的并联式气电混合动力船舶模式切换控制[J]. 中国机械工程, 2024, 35(8): 1489-1497.
[7] 叶青, 陈君杰, 向国. 极浅水域船舶航行阻力及下沉量数值计算方法[J]. 海军工程大学学报, 2024, 36(1): 105-112.
[8] 赵辉, 苏中, 刘宁, 等. 基于双轴地磁航向误差自旋修正的行人自主定位方法[J]. 中国惯性技术学报, 2023, 31(6): 585-592+636.
[9] 苏文学, 孟祥飞, 张强. 输入饱和约束下自适应RBF神经网络非线性反馈船舶航向控制[J]. 上海海事大学学报, 2024, 45(2): 14-19.
[10] 于亮, 丁峰, 杨恒瑞, 等. 燃料电池混合动力船舶分层控制策略[J]. 船舶工程, 2025, 47(1): 107-113.
[11] 李博, 张国庆, 张显库, 等. 基于鲁棒自适应控制算法的船舶航迹舵样机设计与开发[J]. 大连海事大学学报, 2024, 50(2): 23-30.
[12] 崔扬, 刘洋, 殷长春, 等. 单船拖曳可控源电磁数据自适应分频匹配滤波消噪方法[J]. 地球物理学报, 2023, 66(4): 1732-1742.
[13] 王超峰, 刘明俊, 张磊, 等. 鄱阳湖水利枢纽船舶失控漂移建模方法[J]. 中国航海, 2023, 46(2): 67-73.
[14] 韩冰, 柳师捷, 陈宇航. 基于EEMD和EIIKF的船舶轴系状态趋势预测研究[J]. 中国航海, 2023, 46(4): 141-146.
[15] 王文新, 刘上, 张国庆, 等. 考虑舵机故障的船舶鲁棒自适应航向保持控制[J]. 中国舰船研究, 2023, 18(1): 116-123.