为满足内河船舶结构规范转型发展需要,研究推导新的船体板屈服强度校核公式。新公式基于弹塑性设计理论,通过建立船体板屈服极限状态方程求解,并考虑局部应力与船体梁总纵应力的合成以及材料泊松比效应。通过10艘典型内河船舶的船底板及载货甲板板厚对比计算表明,在基于载荷一致并考虑腐蚀增量的情况下,新公式计算的板厚与HCSR规范公式计算厚度相当,比《钢质内河船舶建造规范(2016)》计算厚度总体上有所减薄,其中货船的船底板平均减薄约10%。可为内河船舶结构规范转型提供理论支撑,在碳中和政策背景下,为船舶结构轻量化提供技术支持。
In order to meet the needs of the transformation and development of inland waterway ships structure rules, a new checking formula for the yield strength of hull plates is derived. Based on the elastic-plastic design theory, the new formula is solved by establishing the yield limit state equation of the hull plate, in which the combination of local stress and the total longitudinal stress of the hull girder and the Poisson's ratio effect of materials are considered. On the premise of consistent load and considering the corrosion increment,the comparative calculation of the plate thickness of the bottom plate and cargo deck of 10 typical inland waterway ships shows that the plate thickness required by the new formula is equivalent to the thickness required by Common Structural Rules for Bulk Carriers and Oil Tankers, which is generally thinner than the thickness required by Rules for The Construction of Inland Waterways Steel Ships 2016, of which the average thickness of the bottom plate of cargo ships is reduced by about 10%.The new formula can provide theoretical support for the transformation of inland waterway ships structure rules, and provide technical support for ship structure lightweight under the background of carbon neutrality policy.
2025,47(21): 43-47 收稿日期:2025-1-15
DOI:10.3404/j.issn.1672-7649.2025.21.008
分类号:U662.1
作者简介:邓乐(1983-),男,硕士,高级工程师,研究方向为船舶结构计算理论、可靠性及规范标准
参考文献:
[1] 王杰德等. 船体强度与结构设计[M]. 北京: 国防工业出版社, 1995.
[2] 中国船级社. 钢质内河船舶建造规范[S]. 北京: 人民交通出版社, 2016: 1-39.
[3] YASUHISA O, YU T, MASAKI M, et al. Design of ship hull structures: A practical guide for engineers[M]. Berlin Heidelberg: Springer, 2009.
[4] IACS. Common Structural Rules for Bulk Carriers and Oil Tankers[S]. IACS, 2022.
[5] PAIK J K, THAYAMBAILLI A K. Ultimate limit state design of steel-plated structure[M]. Wiley, 2003.
[6] 孙利, 邱伟强. 基于局部横向强度要求的船舶侧向承载板厚度设计研究[J]. 船舶与海洋工程, 2014(4): 12-19.
SUN L, QIU W Q. Research on thickness design of ship lateral bearing plate based on local lateral strength requirements[J]. Ship and Ocean Engineering, 2014(4): 12-19.
[7] HUGHES O F. 船舶结构设计[M]. 张祥孝, 主译. 广州: 华南理工大学出版社, 1988.
[8] 王子龙, 杨婧媛, 赵煜森. 船体结构设计规范中板厚公式分析[J]. 船海工程, 2019, (a01): 49-52.
WANG Z L, YANG J Y, ZHAO Y S. Analysis of plate thickness formula in hull structure design rule[J]. Ship and Sea Engineering, 2019, (a01): 49-52.
[9] IACS. Common structural rules for bulk carriers and oil tankers, technical background report[R]. IACS, 2013.
[10] 邹路遥, 邓乐, 唐文勇. 内河散货船总纵极限强度可靠性分析[J]. 船海工程, 2017, 46(2): 30-33
ZOU L Y, DENG L, TANG W Y. Reliability analysis of longitudinal ultimate strength of inland bulk carriers[J]. Ship and Sea Engineering, 2017, 46(2): 30-33
[11] 中国船级社. 钢质内河船舶建造规范修改通报2019[S]. 北京: 人民交通出版社股份有限公司, 2019.