随着水下滑翔机在海洋观探测领域的应用日益广泛,其配套保障设施的使用需求快速增长,相关装备技术的研究成为热点。本文针对水下滑翔机布放和回收时人力成本高、安全风险大的问题,提出一种使用ROV(Remote Operated Vehicle)收放的技术方案,阐述了ROV部件组成、设计思路和工作流程,基于有限元法校核关键部件的屈服强度,根据设计方案制作了原型机并开展了海上试验,验证了可行性与可靠性,分析了ROV工作效率影响因素和设计方案改进思路,可为后续新型ROV设计提供参考借鉴。
With the increasing application of Underwater Gliders in marine observation and exploration, the demand for supporting facilities has grown rapidly, making related equipment technologies a research hotspot. To address the problems of high manpower demands and safety risks associated with the deployment and recovery of Underwater Gliders, this article proposes a innovative technical solution employing ROV (Remote Operated Vehicle). The investigation elaborates on the ROV's component composition, design methodology, and workflow. The yield strength of mission-critical and load-bearing components was validated through finite element method analysis techniques. A prototype was subsequently developed based on the design scheme and subjected to sea trials. The experiment validated the system's reliability and demonstrated the feasibility of ROV-assisted glider recovery. This article analyses factors affecting ROV efficiency and design improvement strategies, and provides methodological reference for the developing of new task-specific ROV systems.
2025,47(21): 81-88 收稿日期:2025-2-14
DOI:10.3404/j.issn.1672-7649.2025.21.014
分类号:U674.941
基金项目:崂山国家实验室科技创新项目(LSKJ202200600)
作者简介:孙文祺(1998-),男,硕士,助教,研究方向为海洋航行器力学性能仿真
参考文献:
[1] 刁宏伟, 李宗吉, 王世哲, 等. 水下滑翔机研究现状及发展趋势[J]. 舰船科学技术, 2022, 44(6): 8-12.
DIAO H W, LI Z J, WANG S Z, et al. The research status and development trend of underwater glider[J]. Ship Science And Technology, 2022, 44(6): 8-12.
[2] 张伟, 王乃新, 魏世琳, 等. 水下无人潜航器集群发展现状及关键技术综述[J]. 哈尔滨工程大学学报, 2020, 41(2): 289-297.
ZHANG W, WANG N X, WEI S L, et al. Overview of unmanned underwater vehicle swarm development status and key technologies[J]. Journal of Harbin Engineering University, 2020, 41(2): 289-297.
[3] 王文龙, 田德艳, 陈志法, 等. 水下滑翔机布放回收技术研究现状和趋势[J]. 船舶工程, 2024, 46(9): 123-134+177.
WANG W L, TIAN D Y, CHEN Z F, et al. Research status and trend of underwater glider launch and recovery technology[J]. Ship Engineering, 2024, 46(9): 123-134+177.
[4] 孙叶义, 武皓微, 李晔, 等. 智能无人水下航行器水下回收对接技术综述[J]. 哈尔滨工程大学学报, 2019, 40(1): 1-11.
SUN Y Y, WU H W, LI H, et al. Summary of AUV underwater recycle docking technology[J]. Journal of Harbin Engineering University, 2019, 40(1): 1-11.
[5] MIRANDA M I. Mobile docking of REMUS-100 equipped with USBL-APS to an unmanned surface vehicle: A performance feasibility study[J]. Dissertations & Theses - Gradworks, 2014.
[6] STOKEY R, ALLEN B, AUSTIN T, et al. Enabling technologies for REMUS docking: an integral component of an autonomous ocean-sampling network[J]. IEEE Journal of Oceanic Engineering, 2001, 26(4): 487-497.
[7] 刘旸, 徐华. 水下滑翔机的布放与回收[J]. 航海技术, 2022(2): 1-4.
LIU Y, XU H. Deployment and recovery of underwater gliders[J]. Navigation Technology, 2022(2): 1-4.
[8] LI Y, JIANG Y, CAO J, et al. AUV docking experiments based on vision positioning using two cameras[J]. Ocean Engineering, 2015, 110: 163-173.
[9] QIN Y, LI Y, YAN P, et al. Hydrodynamic analysis of AUV underwater docking with a cone-shaped dock under ocean currents[J]. Ocean engineering, 2014.
[10] 徐胜, 朱健国, 齐柏澄, 等. 一种用于水下滑翔机的布放回收系统及其布放回收方法: CN116001988A[P]. 2023-04-25.
[11] 马杰. 水下滑翔机回收抱紧装置的设计与研究[D]. 沈阳: 东北大学, 2020.
[12] 崔陈铭. “海燕-Ⅱ”水下滑翔机横纵摇耦合与稳定性研究[D]. 天津: 天津大学, 2020.
[13] RAHIMUDDIN, HASNAWIYA H, RIVAI H A, et al. Design of omni directional remotely operated vehicle (ROV)[J]. Journal of Physics Conference Series, 2018, 962: 012017.
[14] 吴杰, 王志东, 凌宏杰, 等. 深海作业型带缆水下机器人关键技术综述[J]. 江苏科技大学学报(自然科学版), 2020, 34(4): 1-12.
WU J, WANG Z D, LING H J, et al. Review on technologies of work-class ROV in deep-water industry[J]. Journal of Jiangsu University of Science and Technology ( Natural Science Edition), 2020, 34(4): 1-12.
[15] 刘鸿文. 材料力学[M]. 北京: 高等教育出版社, 1982.
[16] 中国船级社. 潜水系统与潜水器入级规范[S]. 北京: 中国船级社, 2018.
[17] 王磊, 杨申申, 徐鹏飞, 等. 一种新型水下机器人的研究与开发[J]. 中国造船, 2010, 51(1): 122-130.
WANG L, YANG S S, XU P F, et al. Research and exploitation of a novel underwater vehicle[J]. Ship Building of China, 2010, 51(1): 122-130.
[18] 樊科迪, 李晨, 兰月政, 等. 基于Ansys的无缆潜航器力学性能分析[J]. 船舶工程, 2020, 42(8): 142-146.
FAN K D, LI C, LAN Y M, et al. Mechanical property analysis of underwater vehicle without cable based on ansys[J]. Ship Engineering, 2020, 42(8): 142-146.
[19] 穆俊辰. 抵近观测型AUV组合导航与抗机械手扰动控制技术研究[D]. 杭州: 浙江大学, 2019.
[20] TRAN C, OVERAAS H, JOHANSEN T A. ROV recovery with wave-motion compensation using model predictive control[J]. Ocean Engineering, 2024(2): 293.