传统控制器在柴油发电机转速控制中难以兼顾快速响应与小超调,并且在面对多变的工作条件时,需频繁调整参数。为了更好地控制柴油发电机转速,提出了基于RBF神经网络的一阶串级线性自抗扰控制器(RBF-CLADRC)。利用自抗扰控制无需精确数学模型和实时扰动补偿的优势,通过RBF神经网络实现控制器参数的在线整定,解决了参数调整难题。Matlab/Simulink仿真测试结果表明:相比于常规控制算法,改进型自抗扰控制算法在动态实验中的瞬时调速率指标低于3%,稳态时间小于2 s,符合国家一级电站标准。
The traditional controller is difficult to balance the fast response and small overshoot in the speed control of diesel generator, and the parameters need to be adjusted frequently in the face of changing working conditions. In order to better adjust the speed of diesel generator, a first-order cascade linear active disturbance rejection controller (RBF-CLADRC) based on RBF neural network is proposed. Using the advantages of active disturbance rejection control technology without accurate mathematical model and real-time compensation of disturbance, the online tuning of controller parameters is realized by RBF neural network, and the problem of parameter adjustment is solved. The Matlab/Simulink simulation test results show that compared with the conventional control algorithm, the improved self-control disturbance control algorithm has an instantaneous adjustment rate index of less than 3% and a steady-state time of less than 2s in the dynamic experiment, which is in line with the national first-level power station standard.
2025,47(21): 101-107 收稿日期:2025-1-29
DOI:10.3404/j.issn.1672-7649.2025.21.017
分类号:U664.121
基金项目:河南省自然科学基金资助项目(222102220100);河南省科技研发计划联合基金项目(222103810084);中原学者工作站项目(224400510030)
作者简介:臧义(1980-),男,博士,副教授,研究方向为电力电子领域的高效电源
参考文献:
[1] 武炜迪, 杨祥国, 陈辉, 等. 船舶柴油发电机组智能控制及优化[J]. 舰船科学技术, 2023, 45(3): 80-86
WU W D, YANG X G, CHEN H, et al. Intelligent control and optimization of marine diesel generator set[J]. Ship Science and Technology, 2023, 45(3): 80-86
[2] 兰文奎. PID控制器在船用柴油机转速控制中的应用[J]. 舰船科学技术, 2020, v42(6): 92-94.
LAN W K. Application of PID controller in speed control of marine diesel engine [J]. Ship Science and Technology, 2020, 42(6): 92-94.
[3] 黎殿来, 董士崔, 宋向华. PID控制参数在线自整定方法综述[J]. 电子世界, 2016(22): 127-127.
LI D L, DONG S C, SONG X H. A review of online self-tuning methods for PID control parameters[J]. Electronic World, 2016(22): 127-127.
[4] MATSUMOTO H, MORITA S, TAKIYAMA T. Application of fuzzy control to internal combustion engines[J]. JSME International Journal Series B Fluids and Thermal Engineering, 2008, 37(1): 159-164.
[5] SANDEEP RAO K, SIVA PRANEETH V N, PAVAN KUMAR Y V. Fuzzy logic-based intelligent PID controller for speed control of linear internal combustion engine[C]//Innovations in Electrical and Electronic Engineering: Proceedings of ICEEE 2020. Springer Singapore, 2021.
[6] 尤向阳. 船舶用柴油机转速智能控制系统设计与实现[J]. 舰船科学技术, 2019, 41(2): 103-105.
YOU X Y. Design and implementation of intelligent control system for marine diesel engine speed[J]. Ship Science and Technology, 2019, 41(2): 103-105.
[7] 祝存玺. 基于遗传算法的船用中速机转速控制策略研究[D]. 哈尔滨: 哈尔滨工程大学, 2023.
[8] 宋恩哲, 王毓源, 丁顺良, 等. RBF神经网络理论在柴油机控制中的应用[J]. 哈尔滨工程大学学报, 2018, 39(5): 908-914.
SONG E Z, WANG Y Y, DING S L, et al. Application of RBF neural network theory in diesel engine control[J]. Journal of Harbin Engineering University, 2018, 39(5): 908-914.
[9] 张艳, 郭凯, 丁茂森. 船舶柴油发电机组转速的模糊RBF神经网络PID控制[J]. 船电技术, 2014, 34(5): 1-5+17.
ZHANG Y, GUO K, DING M S. Fuzzy RBF neural network PID control of marine diesel generator set speed[J]. Ship Power Technology, 2014, 34(5): 1-5+17.
[10] 徐红明, 吴震, 周波, 等. 船舶柴油机转速模糊神经网络PID智能控制[J]. 舰船科学技术, 2022, 44(21): 101-105.
XU H M, WU Z, ZHOU B, et al. Fuzzy neural network PID intelligent control of marine diesel engine speed[J]. Ship Science and Technology, 2022, 44(21): 101-105.
[11] 姚崇, 龙云, 马子焜. 基于Elman神经网络系统辨识柴油机调速算法研究[J]. 控制工程, 2021, 28(6): 1122-1129.
YAO C, LONG Y, MA Z K. Research on identification of diesel engine speed regulation algorithm based on Elman neural network system[J]. Control Engineering, 2021, 28(6): 1122-1129.
[12] 吴必瑞, 吴雄, 王超君, 等. 自抗扰控制器在柴油发电机控制系统中的应用[J]. 厦门理工学院学报, 2012, 20(3): 57-61.
WU B R, WU X, WANG C J, et al. Application of active disturbance rejection controller in diesel generator control system[J]. Journal of Xiamen University of Technology, 2012, 20(3): 57-61.
[13] LIANG S D, FENG S H, QING B T, et al. Model-based control with active disturbance rejection algorithm for a diesel engine[J]. Complexity, 2023: 8429922: 1-8429922: 15.
[14] GAO Z. On the centrality of disturbance rejection in automatic control[J]. ISA Transactions, 2014, 53(4): 850-857.
[15] GAO Z. Active disturbance rejection control: From an enduring idea to an emerging technology[C]//2015 10th International Workshop on Robot Motion and Control, Poznan, Poland, 2015
[16] GAO Z. Scaling and bandwidth-parameterization based controller tuning[C]//Proceedings of the IEEE 2003 American Control Conference, Denver, Colorado, USA, 2003.