喷水推进装置紧急停车工况下,操舵倒航机构承受的纵向力远超正常工况,对结构强度的要求也远高于正常工况。为研究喷水推进操舵倒航机构紧急停车工况下的纵向力,建立了修正公式代替传统简易公式计算操舵倒航机构纵向力,并应用CFD技术计算了一种型式操舵倒航机构在不同喷口尺寸、不同流量下纵向力,分析了喷口尺寸和流量在一定范围内,纵向力大小与喷口尺寸以及流量的关系,总结在一定范围内,喷口减小操舵倒航机构纵向力却增大的变化规律,为喷水推进操舵倒航机构的结构优化,以及模块化、系列化和轻量化设计提供参考。
Under emergency shutdown conditions of the waterjet propulsion system, the longitudinal force born by the steering and reversing gear far exceeds the normal work conditions and the requirement for the structural strength also far exceed the normal work conditions. To study the longitudinal force on the steering and reversing gear of waterjet under emergency shutdown conditions, modifier formula was set up to calculate the longitudinal force instead of simplified formula and CFD technology was applied to calculate the longitudinal force on a type of steering and reversing gear under different nozzle sizes and flow rates. The relationship between the longitudinal force magnitude, nozzle size, and flow rate was analyzed within a certain range of nozzle size and flow rate. Summarize the variation law that within a certain range, as the nozzle size decreases, the longitudinal force of the steering and reversing gear increase, and provide reference for the structural optimization, modularization, serialization, and lightweight design of the waterjet propulsion. The research results can be applied to the design work of waterjet serialization, modularization and lightweight.
2025,47(21): 108-113 收稿日期:2025-2-7
DOI:10.3404/j.issn.1672-7649.2025.21.018
分类号:U644.3
基金项目:喷水推进技术重点实验室基金资助项目(JCKY2024206D011)
作者简介:李贵斌(1973-),男,硕士,研究员,研究方向为喷水推进技术
参考文献:
[1] 刘建国, 张志远, 戴原星, 等. 喷水推进技术发展综述[J]. 船舶, 2023, 34(6): 1-13.
LIU J G, ZHANG Z Y, DAI Y X, et al. Overview of the development of water jet propulsion technology[J]. Ship and Boat, 2023, 34(6): 1-13.
[2] VAN TERWISGAT. Report of the specialist committee on validation of waterjet test procedures to the 24th ITTC[C]// The 24th International Towing Tank Conference. Edinburgh, UK, ITTC. II, 2005: 471-508.
[3] 蔡佑林, 沈兴荣, 孙群. 喷水推进船航速预报的动量通量试验技术发展现状[J]. 中国造船, 2015, 56(2): 131-141.
CAI Y L, SHEN X G, SUN Q. The current development status of momentum flux test technology for predicting the speed of waterjet propulsion ships[J]. China Shipbuilding Industry, 2015, 56(2): 131-141.
[4] 王立祥, 蔡佑林. 喷水推进及推进泵设计理论和技术[M]. 上海: 上海交通大学出版社, 2018.
[5] JOHN ALLISON, CHARLES DAI. Steering and reversing gear for very large waterjets[C]//International Symposium on Waterjet Propulsion Latest Developments. London. UK, 1994.
[6] CHISLETT M S, ECLECTICS MSC, AXEL MΦLGAARD. Waterjet steering and stopping force[C]//The International Conference on Waterjet Propulsion Latest Developments. Amsterdam. Sweden, 1998.
[7] 翟志红, 张岩, 张潜, 等. 喷水推进装置操纵力试验台架设计[C]//第二十届中国国际高性能船学术报告会暨中国国际游艇设计建造技术论坛, 上海, 2015.
[8] 李贵斌, 王俊, 王立祥. 喷水推进操舵倒航机构受力研究[J]. 水动力研究与进展A辑, 2020, 35(1): 84-89.
LI G B, WANG J, WANG L X. Research on the force on the steering and reversing mechanism of water jet propulsion [J]. Hydrodynamic Research and Progress Part A 2020, 35(1): 84-89.
[9] 王建东, 王俊. 仿生型操舵倒航机构倒航性能的水动力试验及数值研究[J]. 舰船科学技术, 2023, 45(8): 28-33.
WANG J D, WANG J. Hydrodynamic test and numerical study on the reverse performance of biomimetic steering reverse mechanism[J]. Journal of Ship Science and Technology, 2023, 45(8): 28-33.
[10] 戴原星, 张志远, 刘建国, 等. 喷水推进三体船阻力与自航数值模拟研究[J]. 船舶, 2019(1): 105-111.
DAI Y X, ZHANG Z Y, LIU J G, et al. Numerical simulation study on resistance and self navigation of three body ship with water jet propulsion[J]. Ship and Boat, 2019(1): 105-111.