为了得到更适合于船舶电力系统特殊工作环境的DC-DC变换器,进行DC-DC变换器的工作状态及平均模型的分析,提出一种单周能量控制方法用于DC-DC变换器的控制。以船舶常用的Buck-boost变换器为例,首先介绍基于所提出的单周能量控制方法的Buck-boost变换器的工作原理,而后推导其非线性平均模型,采用雅可比矩阵分析其非线性特性,分析结果显示在参考电压的变化下其不会发生分岔或其他慢尺度振荡现象,验证其宽的参数稳定域。最后进行仿真试验,仿真试验结果表明了理论推导模型的正确性,再次证实了所提出的单周能量控制方法具有更优异的动态稳定性,可以在更宽的参数范围域中保持稳定的运行。
In order to obtain a more suitable DC-DC converter for the special working environment of ship power systems, the operating status and average model of the DC-DC converter were analyzed, and a one-cycle energy control method was proposed for the control of the DC-DC converter. Taking the commonly used Buck-boost converter in ships as an example, the working principle of the Buck-boost converter based on the proposed one-cycle energy control method is first introduced. Then, its nonlinear average model is derived, and the nonlinear characteristics are analyzed using the Jacobian matrix. The analysis results show that under the change of reference voltage, it does not exhibit bifurcation or other slow-scale oscillation phenomena, verifying its wide parameter stability domain. Finally, simulation experiments are conducted.The results of the simulation experiments demonstrate the correctness of the theoretical derivation model, further confirming that the proposed one-cycle energy control method has superior dynamic stability and can maintain stable operation over a wider range of parameters.
2025,47(21): 121-126 收稿日期:2025-1-13
DOI:10.3404/j.issn.1672-7649.2025.21.020
分类号:U671.99
基金项目:国家自然科学基金资助项目(62001169);广州市2025年度基础与应用基础研究专题(青年博士“启航”项目)(SL2024A04J01736)
作者简介:王磊(1987-),女,博士,副研究员,研究方向为电力电子能量变换、船舶电力系统。
参考文献:
[1] 刘振亚. 全球能源互联网跨国跨洲互联研究及展望[J]. 中国电机工程学报, 2016, 36(19): 5103-5110+5391.
LIU Z Y. Research and prospects of global energy internet interconnection across countries and continents[J]. Chinese Journal of Electrical Engineering, 2016, 36(19): 5103-5110+5391.
[2] 严新平. 智能船舶的研究现状与发展趋势[J]. 交通与港航, 2016, 3(1): 25-28.
YAN X P. Current research status and development trends of intelligent ships[J]. Transportation and Port Navigation, 2016, 3(1): 25-28.
[3] ZHOU Y F, JIANG X D, CHEN J N. Analysis of complex intermittency in boost converter from a bifurcation control viewpoint[J]. Science in China Series F: Information Sciences, 2008, 51(12): 2135-2149 .
[4] ZHIOUA M, EL AROUDI A, BELGHITH S, et al. Modeling, dynamics, bifurcation behavior and stability analysis of a DC–DC boost converter in photovoltaic systems[J]. International Journal of Bifurcation and Chaos, 2016, 26(10): 1-16.
[5] XIE F, ZHANG B, YANG R, et al. Complex instabilities near codimension-2 bifurcation and torus breakdown in a Ćuk converter with an inductive impedance load[J]. Science China Information Sciences, 2014, 57(2): 1-10.
[6] BAO B C, SHI G D, XU J P, et al. Dynamics analysis of chaotic circuit with two memristors[J]. Science China Technological Sciences, 2011, 54(8): 2180-2187.
[7] 王发强, 李晶, 马西奎. 电压控制正极性输出罗变换器的改进平均模型建模及稳定性分析[J]. 物理学报, 2015, 64(21): 210506.
WANG F Q, LI J, MA X K. Improved average model modeling and stability analysis of voltage-controlled positive polarity output luo converter[J]. Acta Physica Sinica, 2015, 64(21): 210506
[8] 王荣杰. 船用电流控制型 Buck-boost 变换器分岔行为分析[J]. 船舶工程, 2016, 38(5): 69-73.
WANG R J. Analysis of bifurcation behavior in shipboard current-controlled Buck-boost converter[J]. Ship Engineering, 2016, 38(5): 69-73.
[9] 朱天丽. 船舶直流微电网稳定性分析[D]. 天津, 天津工业大学, 2020.
[10] PIOTR J, ANDRZEJ P, TOMASZ T. The study of chaotic behaviour in the marine power system containing nonlinear varying load[C]//10th International Conference and Exposition on Electrical and Power Engineering (EPE2018), 2018.