针对水声干扰器集群对抗双基地声呐的实际效能及编队队形问题,提出一种基于双基地声呐测量精度、检测与虚警概率,以及信号能量等多因子约束下的综合效能评估方法。首先,基于船载水声干扰器集群对抗双基地声呐应用场景,构建水声干扰器和双基地声呐模型。然后,结合双基地声呐的克拉美罗下界细化声呐模型参数,以3个水声干扰器为例,构建集群水声对抗模型。最后,按照不同队形进行集群对抗效能分析,开展仿真测试及试验。仿真结果表明,3个水声干扰器可使双基地声呐的有效覆盖面积缩小72.40%,一字横队比V字队形具有更好的远距离干扰效果。湖上试验结果证明,水声干扰器谱级高于噪声模拟器约10 dB,可将声呐检测概率减小至0.05以下。
A comprehensive performance evaluation method based on multiple factors such as measurement accuracy, detection and false alarm probability, and signal energy is proposed to address the practical effectiveness and formation issues of a cluster of underwater acoustic jammers against bi-static sonar. Firstly, based on the application scenario of shipborne acoustic disruptor clusters against bi-static sonar, a model of acoustic disruptor and bi-static sonar is constructed. Then, combined with the Cramer lower bound of the bi-static sonar, the sonar model parameters are refined, and a cluster acoustic countermeasure model is constructed using three acoustic jammers as examples. Finally, analyze the effectiveness of cluster confrontation according to different formations, conduct simulation tests and experiments. The simulation results show that three underwater acoustic jammers can reduce the effective coverage area of the bi-static sonar by 72.40%, and a single horizontal formation has better long-range interference effect than a V-shaped formation. The experimental results on the lake have shown that the spectral level of the underwater acoustic jammer is about 10dB higher than that of the noise simulator, which can reduce the sonar detection probability to below 0.05.
2025,47(21): 127-135 收稿日期:2025-2-19
DOI:10.3404/j.issn.1672-7649.2025.21.021
分类号:U666.7
作者简介:张庆国(1981-),男,高级工程师,研究方向为水声信号处理
参考文献:
[1] 李启虎. 水声信号处理领域新进展[J]. 应用声学, 2012, 31(1): 2-9.
LI Q H. New advances of underwater acoustic signal processing[J]. Applied Acoustics, 2012, 31(1): 2-9.
[2] 李启虎. 不忘初心, 再创辉煌: 声呐技术助推海洋强国梦[J]. 声学学报, 2019, 44(4): 404.
LI Q H. Never forget the original intention, create brilliance again: sonar technology promotes the dream of building a strong maritime nation[J]. Acta Acustica, 2019, 44(4): 404.
[3] 唐波, 孟荻, 范文涛. 国外水声对抗器材发展现状与启示——潜用器材[J]. 水下无人系统学报, 2022, 30(1): 15-22.
TANG B, MENG D, FAN W T. Current situation and enlightenment of foreign underwater acoustic countermeasure equipment for submarine[J]. Journal of Unmanned Undersea Systems, 2022, 30(1): 15-22.
[4] 梁国龙, 张瑶, 付进, 等. 双基地声呐与干扰器对抗效能分析[J]. 计算机工程与应用, 2011, 47(23): 27-28+87.
LIANG G L, ZHANG Y, FU J, et al. Analyzing on bistatic sonar combating with anti-jamming[J]. Computer Engineering and Applications, 2011, 47(23): 27-28+87.
[5] 杨丽, 蔡志明. 双基地声呐在水声对抗中的应用效果分析[C]//中国声学学会2007年青年学术会议论文集(下), 2007.
[6] 庞博. 水声干扰器干扰效果参数级建模与分析[J]. 声学技术, 2020, 39(3): 295-298.
PANG B. Parameter modeling and analysis for the jamming effectiveness of noise-jammer[J]. Technical Acoustics, 2020, 39(3): 295-298.
[7] 徐复, 郑丽莉. 灵巧噪声干扰在水声对抗中的应用研究[J]. 声学与电子工程, 2022, 22(1): 30-33.
XU F, ZHENG L L. Research on the application of agile noise interference in underwater acoustic warfare[J]. Acoustics and Electronics Engineering, 2022, 22(1): 30-33.
[8] 梁国龙, 李硕, 邹男, 等. 多站联合观测非合作目标的定位批号关联算法[J]. 声学学报, 2024, 49(5): 1005-1018.
LIANG G L, LI S, ZOU N, et al. Locational lot number association algorithm for multi-station joint observation of non-cooperative targets[J]. Acta Acustica, 2024, 49(5): 1005-1018.
[9] 马雪飞, 宋清华, 姚吉, 等. 双基地声呐系统的空间阵位设计分析[J]. 信号处理, 2023, 39(10): 1805-1818.
MA X F, SONG Q H, YAO J, et al. Analysis of spatial configuration design of bistatic sonar system[J]. Journal of Signal Processing, 2023, 39(10): 1805-1818.
[10] 路晓磊. 一种低频水声对抗控制系统设计[J]. 电子设计工程, 2019, 27(22): 20-23+28.
LU X L. A design of low frequency underwater acoustic countermeasure control system[J]. Electronic Design Engineering, 2019, 27(22): 20-23+28.
[11] 周荣艳, 陈建峰, 闫青丽, 等. 海洋声场中分布式无源定位系统的节点配置方法[J]. 声学学报, 2020, 45(1): 29-37.
ZHOU R Y, CHEN J F, YAN Q L, et al. A sensor configuration method for distributed passive localization system in ocean acoustic field[J]. Acta Acustica, 2020, 45(1): 29-37.
[12] 田坦, 刘国枝, 孙大军. 声呐技术[M]. 黑龙江: 哈尔滨工程大学出版社, 2000.
[13] 王永洁, 田立业, 周佳玉. 潜艇训练虚拟水声目标仿真研究[J]. 指挥控制与仿真, 2023, 45(1): 130-135.
WANG Y J, TIAN L Y, ZHOU J Y. Research on virtual underwater acoustic target simulation for submarine training[J]. Command Control & Simulation, 2023, 45(1): 130-135.
[14] 张小凤, 张光斌. 双/多基地声呐系统[M]. 北京: 科学出版社, 2014.
[15] 刘宗伟, 鲍颖, 吕连港等. 全球气候变化对海洋声吸收系数的影响研究[J]. 海洋科学进展, 2017, 35(2): 210-220.
LIU Z W, BAO Y, LV L G, et al. The effect of global climate change on ocean sound absorption[J]. Advances in Marine Science, 2017, 35(2): 210-220.
[16] 张朝金, 孙炳文, 莫亚枭, 等. 国际监测系统水听器台站监测能力分析[J]. 应用声学, 2021, 40(4): 498-509.
ZHANG C J, SUN B W, MO Y X, et al. Analysis of monitoring ability of international monitoring system hydrophone stations[J]. Journal of Applied Acoustics, 2021, 40(4): 498-509.
[17] 康乐, 孙宝三, 张维利. 潜艇水声对抗航空声呐作战效能仿真研究[J]. 指挥控制与仿真, 2023, 45(3): 17-24.
KANG L, SUN B S, ZHANG W L. Research on submarine underwater acoustic effectiveness against airborne sonar[J]. Command Control & Simulation, 2023, 45(3): 17-24.