基于简正波方法构建了浅海环境下组合声源的声传播模型,通过数值仿真对组合声源与点源在不同频率下的传递函数进行比较分析。接下来对该模型的准确性进行验证,并对浅海环境中组合声源在不同海底参数、不同声源布放方式以及不同声速剖面下的声传播特性进行研究。仿真结果表明,随着频率的升高,组合声源相对于单一声源的声传播损失明显降低,且声场差异较大。在近距离,2种声场相似度较差,随着距离的增加,2种声场相似度也在增加,且不同的声源布放方式(声源间距,声源深度)在浅海环境中也显著影响组合声源的声传播效果。可为水声探测、海底通信以及海洋监测等应用提供参考。
A sound propagation model for combined sources in shallow water was developed based on the normal mode method. Numerical simulations were conducted to compare the transfer functions of combined sources and point sources at different frequencies. The model's accuracy was validated, with a study on acoustic propagation of combined sources in shallow water, examining variations in seabed parameters, deployment configurations, and sound velocity profiles. Simulation results show that, with increasing frequency, the propagation loss of combined sources is significantly reduced compared to single sources, with notable differences in the sound field. At short distances, the similarity between the two sound fields is low, but it increases with distance. Additionally, different deployment methods (source spacing, source depth) significantly affect the propagation performance of combined sources in shallow water. These findings provide important insights for underwater acoustics detection, seabed communication, and ocean monitoring applications.
2025,47(21): 136-142 收稿日期:2025-2-14
DOI:10.3404/j.issn.1672-7649.2025.21.022
分类号:U66;TB561
作者简介:张淞南(2000-),男,硕士研究生,研究方向为组合声源声传播特性
参考文献:
[1] 胡鹏涛. 浅海中声能量分布的不均匀性对潜艇辐射噪声测量的影响研究[D]. 哈尔滨: 哈尔滨工程大学, 2010.
[2] 庞业珍. 空间声场相关特性测量方法及应用研究[D]. 北京: 中国舰船研究院, 2018.
[3] PAUL C E. Underwater acoustic modeling and simulation(fifth edition)[M]. Boca Raton: CRC Press, Taylor & Francis Group, 2018.
[4] REN Q Y, HERMAND J P, PIAO S C. Space-frequency distribution of the vector field of broad-band sound in shallow water [C]//Ocean 2010. IEEE, 2010.
[5] LUNKOV A A, PETNIKOV V G. Focusing of low-frequency sound field in shallow water[J]. Acoustical Physical, 2010, 56(2): 228-233.
[6] LUNKOV A A, PETNIKOV V G. Phase fluctuations of focused low-frequency sound fields in shallow water[J]. Acoustical Physical, 2011, 57(5): 672-680.
[7] 赵梅, 胡长青. 浅海倾斜海底声场空间相关性研究[J]. 声学技术, 2010, 29(4): 365-369.
ZHAO M, HU C Q. Study on the spatial correlation of shallow water sloping seafloor sound field[J]. Acoustical Technology, 2010, 29(4): 365-369.
[8] 王文博, 黄勇. 水平不变浅海环境随机扰动对声传播的影响[J]. 应用声学, 2015, 34(1): 90-94.
WANG W B, HUANG Y. The impact of horizontal invariant random disturbances on sound propagation in shallow water environments[J]. Applied Acoustics, 2015, 34(1): 90-94.
[9] 祝捍皓, 郑广学, 张海刚. 浅海环境下低频声信号传播特性研究[J]. 上海交通大学学报, 2017, 51(12): 1464-1472.
ZHU H H, ZHENG G X, ZHANG H G. Study on the propagation characteristics of low-frequency sound signals in shallow water environments[J]. Journal of Shanghai Jiao Tong University, 2017, 51(12): 1464-1472.
[10] 窦雨芮, 周其斗, 谭路. 基于简正波模态的浅海声传播的最佳深度规律研究[J]. 舰船科学技术, 2021, 43(1): 138-145.
DOU Y R, ZHOU Q D, TAN L. Study on the optimal depth law of shallow water sound propagation based on normal mode[J]. Ship Science and Technology, 2021, 43(1): 138-145.
[11] 邓玉芬, 蒋其伟, 吴双林, 等. 海底底质特性对浅海声传播影响分析[J]. 海洋测绘, 2023, 43(4): 33-37.
DENG Y F, JIANG Q W, WU S L, et al. Analysis of the influence of seabed sediment characteristics on shallow water acoustic propagation[J]. Hydrographic Surveying and Charting, 2023, 43(4): 33-37.
[12] 刘力溟, 冯伟佳, 计方, 等. 典型浅海环境参数对声传播损失影响及试验验证[J]. 数字海洋与水下攻防, 2024, 7(3): 246-252.
LIU L M, FENG W J, JI F, et al. The impact of typical shallow water environmental parameters on propagation loss and experimental verification[J]. Digital Ocean and Underwater Offense and Defense, 2024, 7(3): 246-252.