本文基于COMSOL Multiphysics软件构建含腐蚀缺陷的海底悬跨管道三维数值模型,综合考虑温度场、应力场和电化学腐蚀场多物理场耦合效应,自定义固体力学、固体传热和二次电流模块之间的耦合关系,研究了内压、拉伸应变和温度对海底悬跨管道应力腐蚀行为的影响规律。结果表明,在热应力影响下,腐蚀电位越负,管道发生腐蚀的倾向性呈现增大的趋势;内压增大时,腐蚀电位负移,缺陷中心的腐蚀电位相对于两端更加显著,腐蚀底部中心区域腐蚀速度快于边缘区域;拉伸应变增大时,缺陷中心的阳极电流密度明显大于缺陷两端,中心阴极电流密度明显小于两端;温度增加时,电流密度增大,腐蚀进程加快。
This paper constructs a three-dimensional numerical model of a subsea suspended pipeline with corrosion defects based on COMSOL Multiphysics software, comprehensively considering the coupling effects of multiphysics fields such as temperature, stress, and electrochemical corrosion. It customizes the coupling relationships between the solid mechanics, heat transfer in solids, and secondary current distribution modules, investigating the impact of internal pressure, tensile strain, and temperature on the stress corrosion behavior of subsea suspended pipelines. The results indicate that, under the influence of thermal stress, as the corrosion potential becomes more negative, the tendency for pipeline corrosion increases. As internal pressure increases, the corrosion potential becomes more negative, with the corrosion potential at the defect center becoming more pronounced than at the ends, and a faster corrosion rate observed in the central area of the defect bottom compared to the edges. With increasing tensile strain, the anodic current density at the defect center increases significantly compared to the ends, while the cathodic current density at the center is substantially lower than at the ends. As temperature rises, the current density increases, thereby accelerating the corrosion process.
2025,47(21): 143-150 收稿日期:2024-11-11
DOI:10.3404/j.issn.1672-7649.2025.21.023
分类号:U177
基金项目:山东省重点研发计划(重大科技创新工程)资助项目(2023CXGC010409);自主创新科研计划项目(理工科)—领军人才培育基金资助项目(24CX07001A)
作者简介:娄敏(1981-),女,博士,教授,研究方向为深水新型立管力学分析与优化设计、海洋管道流固耦合及振动抑制、深水柔性管道设计与研发
参考文献:
[1] LI X H, GUO M M, CHEN G M. A hybrid algorithm for inspection planning of subsea pipelines subject to corrosion-fatigue degradation[J]. Process Safety and Environmental Protection, 2023, 178: 685-694.
[2] GAO X D, SHAO Y B, XIE L Y, et al. Behavior of API 5L X56 submarine pipes under transverse impact[J]. Ocean Engineering, 2020, 206: 107337.
[3] WEN Q Y, HUANG F, XIAO H, et al. Improving hydrogen induced cracking resistance of high strength acid-resistant submarine pipeline steels via trace-Mg treatment[J]. International Journal of Hydrogen Energy, 2023, 48(39): 14808-14821.
[4] LIU Q Q, WU W, PAN Y, et al. Electrochemical mechanism of stress corrosion cracking of API X70 pipeline steel under different AC frequencies[J]. Construction and Building Materials, 2018, 171: 622-633.
[5] 于佳. 钢绞线斜拉索锚固系统耐久性试验研究[D]. 重庆: 重庆交通大学, 2015.
[6] 夏齐强, 杨光付, 邢少华. 舰船铜镍合金海水管路系统腐蚀防护标准体系研究[J]. 舰船科学技术, 2023, 45(19): 89-93.
XIA Q Q, YANG G F, XING S H. Research on the corrosion protection standard system of copper-nickel alloy seawater pipeline system for ships[J]. Ship Science and Technology, 2023, 45(19): 89-93.
[7] 仇潞. 船舶材料抗盐水腐蚀特性中的温度参数影响[J]. 舰船科学技术, 2022, 44(17): 64-67.
QIU L. Influence of temperature parameters on corrosion resistance of marine materials in salt water[J]. Ship Science and Technology, 2022, 44(17): 64-67.
[8] 蒋庆刚. 舰船金属基材表面防腐蚀层处理与防腐性能研究[J]. 舰船科学技术, 2022, 44(15): 71-74.
JIANG Q G. Study on anti-corrosion coating treatment and anti-corrosion performance of ship metal substrate surface[J]. Ship Science and Technology, 2022, 44(15): 71-74.
[9] SUN D X, WU M, XIE F, et al. A three-dimensional coupled finite element model for the simulation of stress corrosion on pipeline steel[C]//Asme Asia Pacific Pipeline Conference. American Society of Mechanical Engineers, 2019.
[10] SANTOS E A, GIORGETTI V, SOUZA JUNIOR C A, et al. Stress corrosion cracking and corrosion fatigue analysis of API X70 steel exposed to a circulating ethanol environment[J]. International Journal of Pressure Vessels and Piping, 2022, 200: 1-12.
[11] 王伟飞, 杨薛航, 韩钰, 等. 基于CFD和热阻网络法的C型舱LEG船温度场分析及热应力计算[J]. 舰船科学技术, 2023, 45(1): 18-23.
WANG W F, YANG X H, HAN Y, et al. Temperature field analysis of LEG carrier of tank type-C based on CFD/thermal resistor network method and thermal stress calculation[J]. Ship Science and Technology, 2023, 45(1): 18-23.
[12] 向琳玲, 刘加一, 阚涛, 等. FLNG热应力分析及其对结构强度的影响[J]. 舰船科学技术, 2017, 39(9): 71-76.
XIANG L L, LIU J Y, KAN T, et al. Thermal stress and strength analysis of FLNG's structure[J]. Ship Science and Technology, 2017, 39(9): 71-76.
[13] RAAFAT E, NASSEF A, EL-HADEK M, et al. Fatigue and thermal stress analysis of submerged steel pipes using Ansys software[J]. Ocean Engineering, 2019, 193: 106574.
[14] JEONG S H, WON M G, HUH N S, et al. Investigation into thermal stress characteristics of pipe-in-pipe under high temperature condition[C]// Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2018.
[15] 孙颖, 吕超. 基于有限元的输气管道热应力及影响因素分析[J]. 西华大学学报(自然科学版), 2018, 37(2): 19-22+45.
SUN Y, LVE C. Analysis of thermal stress and influencing factors of gas pipeline based on finite element method[J]. Analysis of Thermal Stress and Influencing Factors of Gas Pipeline Based on Finite Element Method, 2018, 37(2): 19-22+45.
[16] 陈志华, 黄金超, 何永禹, 等. 深海管道稳态流动非均匀温度场研究[J]. 哈尔滨工程大学学报, 2017, 38(2): 189-194+200.
CHEN Z H, HUANG J C, HE Y Y, et al. Non -uniform temperature fields of a deep-sea pipeline in steady flow[J]. Journal of Harbin Engineering University, 2017, 38(2): 189-194+200.
[17] XU L Y, Y FRANK CHENG. Development of a finite element model for simulation and prediction of mechanoelectrochemical effect of pipeline corrosion[J]. Corrosion Science, 2013, 73: 150-160.
[18] ZHANG Z W, NI X, Y FRANK CHENG. Assessment by finite element modelling of the mechano-electrochemical interaction at double-ellipsoidal corrosion defect with varied inclinations on pipelines[J]. Construction and Building Materials, 2020, 260: 120459.
[19] XU L Y, Y FRANK CHENG. A finite element based model for prediction of corrosion defect growth on pipelines[J]. International Journal of Pressure Vessels and Piping, 2017, 153: 70-79.
[20] GUTMAN E M. Mechanochemistry of solid surfaces[M]. World Scientific Publishing Company, 1994.
[21] 刘金梅, 张国威, 周国强, 等. 高温输气管道热-结构耦合数值仿真分析[J]. 中国工程机械学报, 2015, 13(4): 358-362.