某舰炮自动机击发机构研制过程中,需对射击后弹药底火的击痕深度是否满足2.40~2.68 mm的可靠击发要求进行分析。击痕深度过浅不足以击发弹药,过深易造成底火被击穿致使火药燃气后喷影响弹丸初速。本文就该舰炮自动机单发、连发2种射击模式下击发机构的工作原理、击针动能、底火击痕深度、炮箱对击发机构的限位程度等方面采用理论建模与弹塑性有限元分析相结合的方法逐一分析。分析结果表明:该舰炮自动机击发机构在单发、连发射击模式下的底火击痕深度仿真值分别为2.41 mm、2.62 mm。结合与实弹射击试验的底火击痕形貌的对比分析,判定该舰炮自动机击发机构单发或连发射击后的底火击痕深度满足可靠击发要求;连发射击模式下击发机构传递至击针的能量为510.1 J,远大于单发射击的28.7 J。因此,舰炮自动机击发机构的设计除考虑底火击痕深度外,还应着重对连发模式下炮箱对击发机构的限位能力进行验证,以降低因限位不足造成击针前出致使底火被击穿的可能;基于该自动机击发机构击发过程的有限元仿真结果,连发射击过程中击发杠杆与炮箱接触的峰值应力为420 MPa,远低于炮箱或击发杠杆的材料屈服强度,认定炮箱对击发机构的限位充分。本工作可为相关自动机的设计提供参考。
During the development of the firing mechanism for a naval gun automatic system, it is necessary to analyze whether the indentation depth of the cartridge primer after firing meets the reliable ignition requirement of 2.40 mm~2.68 mm. Insufficient indentation depth may fail to ignite the ammunition, while excessive depth risks primer penetration that could cause propellant gas leakage and affect projectile muzzle velocity. This paper employs a combined approach of theoretical modeling and elasto-plastic finite element analysis to systematically examine the working principles, firing pin kinetic energy, primer indentation depth, and motion limits imposed by the gun housing on the firing mechanism under both single-shot and automatic firing modes. The analytical results indicate: The simulated primer indentation depths under single-shot and automatic firing modes are 2.41 mm and 2.62 mm respectively. Comparative analysis with actual firing test results confirms that these depths satisfy reliable ignition requirements; The energy transferred to the firing pin in automatic mode reaches 510.1 J, significantly higher than the 28.7 J in single-shot mode. Beyond primer indentation considerations, the design should prioritize verifying the motion-limiting capability of the gun housing in automatic mode to prevent potential primer penetration caused by insufficient firing pin restraint; Finite element simulations reveal that the peak contact stress between the firing lever and gun housing during automatic firing is 420 MPa, well below the material yield strength of both components, confirming adequate motion limitation by the gun housing.
2025,47(21): 158-162 收稿日期:2025-2-10
DOI:10.3404/j.issn.1672-7649.2025.21.025
分类号:U66;TJ391
基金项目:海军研究院预研项目
作者简介:彭松江(1978-),男,研究员,研究方向为中大口径舰炮研制
参考文献:
[1] 张景新, 郭新宇. 楔式炮闩自动击发原因分析[J]. 兵工学报, 2006, 27(4): 626-629.
[2] 景银萍, 杨臻, 李强, 等. 某外能源转管机枪击发机构参数优化设计[J]. 振动与冲击, 2010, 29(12): 153-157+245.
[3] 杨志峰, 何伟. 某链式机枪击发结构改进仿真分析[J]. 兵工自动化, 2023, 42(7): 74-77
[4] 葛藤, 贾智宏, 周克栋. 某型自动步枪击发机构击发过程分析研究[J]. 弹道学报, 2008(2): 77-80.
[5] 王红梅, 杨卫, 刘俊. 击发机构内碰撞能量损失的有限元分析[J]. 计算机仿真, 2013, 30(2): 51-54.
[6] 蔺月敬. 基于刚柔耦合的典型击发机构机理分析[D]. 南京: 南京理工大学, 2013.
[7] 杨艳峰, 郑坚, 狄长春, 等. 火炮炮闩击发机构可靠性强化试验技术[J]. 火力与指挥控制, 2016, 41(7): 175-178.
[8] 姜驰, 葛建立, 汤鹏扬, 等. 某迫击炮击发机构关键部件仿真分析[J]. 火炮发射与控制学报, 2023, 44(5): 29-33+39
JIANG C, GE J L, TAng P Y, et al. Simulation analysis of key components of a mortar firing mechanism[J]. Journal of Gun Launch and Control, 2023, 44(5): 29-33+39
[9] 贾陆阳, 景春温, 刘万川, 等. 某自动步枪击发机构参数化分析与优化设计[J]. 机械设计与制造工程, 2023, 52(7): 11-15
[10] 蒲辉. 某枪械击发动力学特性的影响因素分析[D]. 太原: 中北大学, 2021.
[11] 步兵自动武器及弹药设计手册[M]. 北京: 国防工业出版社, 1977.
[12] 史明瑞. 武器撞击动力学[M]. 北京: 兵器工业出版社, 1991.
[13] JOHNSON G. R. AND W. H. Cook. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures[J]. Engineering Fracture Mechanics, 1985, 21(1): 31-48.
[14] 梁林, 彭松江, 欧洪亮. 身管内膛烧蚀磨损条件下弹体发射强度数值模拟[J]. 弹道学报, 2021, 33(4): 26-33.