随着船舶设备复杂度的增加,为提高船舶运营安全性和效率,基于数字孪生技术开发发动机燃烧室状态监测和故障检测系统,采用微服务器架构和前后端分离模式开发。前端以HTML、Vue.js搭建用户交互界面,业务逻辑层用Java开发,同时用Blender软件创建船舶柴油发动机的数字孪生映射结构模型,通过WebGL展示其3D模型、运行状态和相关数据。系统集成多种传感器,实时采集发动机温度、压力、振动等数据,运用大数据分析与迁移学习算法进行故障模式识别,结合历史数据与实时信息预测潜在故障并预警。试验验证显示,该系统能有效提升船舶设备的安全性和可靠性,为船舶智能化管理提供技术支撑。
With the increasing complexity of ship equipment, in order to improve the safety and efficiency of ship operations, an engine combustion chamber status monitoring and fault detection system is developed based on digital twin technology, using a microservice architecture and front-end and back-end separation mode. The front-end uses HTML and Vue.js to build the user interaction interface, and the business logic layer is developed in Java. At the same time, Blender software is used to create a digital twin mapping structure model of the marine diesel engine, and its 3D model, operating status, and related data are displayed through WebGL. The system integrates multiple sensors to collect real-time data on engine temperature, pressure, vibration, etc. It uses big data analysis and transfer learning algorithms for fault pattern recognition, combines historical data with real-time information to predict potential faults and issue warnings, and assists crew members in preventive maintenance. Experimental verification shows that the system can effectively improve the safety and reliability of ship equipment, providing technical support for intelligent management of ships.
2025,47(21): 183-189 收稿日期:2024-11-26
DOI:10.3404/j.issn.1672-7649.2025.21.030
分类号:U672
基金项目:国家重点研发计划资助项目(2022YFB4300701);企事业委托科技项目(H20240252)
作者简介:陆旭昇(1984 -),男,硕士,工程师,研究方向为船舶设计技术
参考文献:
[1] 程度钧. 基于数字孪生的物流设备故障预测[D]. 南昌: 华东交通大学, 2022.
[2] 曾仕琪, 苏栋, 龚浩锋, 等. 数字孪生技术在城市地下空间运维阶段的应用与研究进展[J/OL]. 隧道建设(中英文), 1-24[2024-10-15].
[3] 兰影铎, 赵恒. 基于航空发动机产品的数字孪生关键实现技术研究[J]. 智能制造, 2024(4): 123-128.
[4] 季慕州. 数字孪生技术在水厂设备预测性维护中的应用研究[J]. 中国建设信息化, 2024(4): 47-51.
[5] 陈冬梅, 赵思恒, 魏承印, 等. 船舶发动机状态监测及预测性维护研究及应用[J]. 中国机械工程, 2022, 33(10): 1162-1168.
[6] 杨少龙, 孙延浩, 向先波, 等. 船舶数字孪生及其服务全生命周期研究综述[J]. 舰船科学技术, 2020, 42(21): 1-8
YANG S L, SUN Y H, XIANG X B,et al. Ship digital twin and a review of life-cycle service[J]. Ship Science and Technology, 2020, 42(21): 1-8
[7] 尹安. 舰船智能备品备件信息管理系统的设计研究[J]. 中国舰船研究, 2021, 16(S1): 142-148.
[8] 沈大伟. 基于传感器采集信息的船舶发动机状态智能检测[J]. 舰船科学技术, 2022, 44(17): 118-121
SHEN D W. Research on intelligent detection of ship engine state based on information collected by sensors[J]. Ship Science and Technology, 2022, 44(17): 118-121
[9] 王方, 甘甜, 王煜栋, 等. 航空发动机燃烧室数字孪生体系关键技术[J]. 航空动力学报, 2023, 38(7): 1546-1560.
[10] 史家辉, 郝小慧, 李雁妮. 一种高效的自监督元迁移小样本学习算法[J]. 西安电子科技大学学报, 2021, 48(6): 48-56.
[11] OGREN R M, KONG S C. Optimization of diesel fuel injection strategies through applications of cooperative particle swarm optimization and artificial bee colony algorithms[J]. International Journal of Engine Research, 2021, 22(9): 3030-3041.
[12] WANG H, WANG S, YANG R, et al. An optimized dynamic model improved deep discriminative transfer learning network for fault detection in rotation vector reducers[J]. Reliability Engineering & System Safety, 2024, 251: 110331.
[13] 工业机器人伺服电机轴承故障检测的迁移学习[J]. 工程软件进展, 2024, 194: 103672.
[14] ZHAO Y P, CAI W. The perceptron algorithm with uneven margins based transfer learning for turbofan engine fault detection[J]. Engineering Applications of Artificial Intelligence, 2024, 127: 107249.
[15] FENG, X M, YAN Z Z, CHEN N N, et al. The synthesis of shape-controlled MnO2/graphene composites via a facile one-step hydrothermal method and their application in supercapacitors[J]. Journal of Materials Chemistry A, 2013, 1.41: 12818-12825.
[16] ZHOU Z X, WANG J Y, CHEN H X, et al. An online compressor liquid floodback fault diagnosis method for variable refrigerant flow air conditioning system[J]. Int J Refrig, 2020, 111: 9-19.
[17] 葛存峰, 吴刚, 叶佳昌, 等. IFIX软件在油脂行业中的应用[J]. 粮食与食品工业, 2024, 31(5): 44-46.
[18] 冯蕴雯, 潘维煌, 路成, 等. 基于故障逻辑的民机液压状态监控与故障诊断[J/OL]. 系统工程与电子技术, 1-16[2024-10-15].
[19] 王佳丽, 杨鹏, 宋程程, 等. 基于深度学习的地铁站点环境满意度评估算法[J/OL]. 现代城市轨道交通, 1-10[2024-10-15].