电磁阀作为船用氨燃料喷射系统中的执行部件之一,长时间工作易导致电磁铁过热失效,对喷射系统的性能具有重要影响。本文在电磁仿真软件Maxwell中搭建电磁阀中电磁铁的静态有限元模型,利用静态电磁场模型,研究电磁铁主磁极半径、磁轭厚度、衔铁厚度及残余气隙等参数对电磁阀静态性能的影响规律;其次利用Workbench和AMESim软件,建立电磁阀多物理耦合仿真平台,深入分析电磁阀的温升特性及动静态特性。仿真结果表明,温度场的主要热源来自线圈,其位置的温度最高达到125 ℃,并得到电磁阀温度场分布情况;电磁阀在励磁峰值电流20 A、保持电流5 A的条件下,电磁力能顺利开启主阀芯,即位移达到1.8 mm,同时满足最大工作流量800 L/min。各项特征均符合船用氨燃料喷射系统的要求。
The solenoid valve, a critical actuator in marine ammonia fuel injection systems, is prone to overheating and failure during prolonged operation, significantly impacting system performance. This study constructs a static finite element model of the solenoid's electromagnet using Maxwell electromagnetic simulation software. It investigates the influence of parameters such as the main magnetic pole radius, yoke thickness, armature thickness, and residual air gap on the static performance of the solenoid electromagnet. Additionally, a multi-physics coupling simulation platform is established using Workbench and AMESim software to analyze the valve's temperature rise and dynamic-static characteristics. Simulation results indicate that the coil is the primary heat source, with temperatures reaching up to 125 °C. Under conditions of a peak excitation current of 20 A and a holding current of 5 A, the electromagnetic force successfully opens the main valve core, achieving a displacement of 1.8 mm and meeting the maximum operational flow rate of 800 L/min. These characteristics fulfill the requirements of marine ammonia fuel injection systems.
2025,47(22): 1-9 收稿日期:2024-2-7
DOI:10.3404/j.issn.1672-7649.2025.22.001
分类号:U663;TH138
基金项目:国家高技术船舶科研项目(2022-296)
作者简介:贺玉海(1976 – ),男,博士,教授,研究方向为新能源动力系统仿真与性能优化设计
参考文献:
[1] 贺林, 李锋, 董思漪. 船用大功率中速氨燃料发动机现状及发展趋势分析[J]. 中国机械, 2023(2): 69-72.
HE L, LI F, DONG S Y. Analysis of the current status and development trends of shipboard high-power medium-speed ammonia fuel engines[J]. Machine China, 2023(2): 69-72.
[2] 王远, 赵金文, 潘志远, 等. 氨燃料在大型油船上的应用前景[J]. 船舶工程, 2022, 44(8): 84-89.
WANG Y, ZHAO J W, PAN Z Y, et al. Application prospects of ammonia fuel in large oil tankers[J]. Ship Engineering, 2022, 44(8): 84-89.
[3] 刘彩亚. 船用柴油机电控喷油器电磁阀设计[D]. 武汉: 武汉理工大学, 2014.
[4] GRAY J T, DIMITROFF E, MECKEL N T, et al. Ammonia fuel: Engine compatibility and combustion[R]. Autom Engi Congress Exposition, 1966.
[5] 王春民, 沙超, 魏学峰, 等. 基于AMESim和Ansoft的直动式电磁阀动态特性仿真分析[J]. 机床与液压, 2017, 45(21): 160-163+148
WANG C M, SHA C, WEI X F, et al. Uimulation analysis of dynamic characteristics of direct-acting solenoid valve based on AMESim and Ansoft[J]. Machine Tool & Hydraulics, 2017, 45(21): 160-163+148
[6] 刘鹏, 范立云, 周伟, 等. 永磁并联磁路高速电磁铁的静态特性[J]. 内燃机学报, 2016, 34(5): 449-455.
LIU P, FAN L Y, ZHOU W, et al. Static characteristics of permanent magnet parallel magnetic circuit high-speed electromagnets[J]. Transactions of CSICE, 2016, 34(5): 449-455.
[7] 任延飞, 席军强, 陈慧岩, 等. 基于混合建模方法的车用比例电磁阀热效应影响分析[J]. 北京理工大学学报, 2022, 42(3): 251-260.
REN Y F, XI J Q, CHEN H Y, et al. Analysis of thermal effect on proportional solenoid valve used in vehicles based on hybrid modeling[J]. Transactions of Beijing Institute of Technology, 2022, 42(3): 251-260.
[8] 贺玉海. 船用低速柴油机喷油控制用电磁阀研究[D]. 武汉: 武汉理工大学, 2015.
[9] 樊旭灿. 考虑温度场的比例电磁阀性能模型研究[D]. 上海: 同济大学, 2020.
[10] 黄柯, 俞亚新, 金波, 等. 伺服比例阀多物理场耦合仿真研究[J]. 液压与气动, 2023, 47(6): 147-155.
HUANG K, YU Y X, JIN B, et al. Research on multi-physical coupling simulation of servo proportional valve[J]. Chinese Hydraulics & Pneumatics, 2023, 47(6): 147-155.
[11] 高元鑫. 大流量高速电磁阀多物理场耦合仿真及优化设计研究[D]. 哈尔滨: 哈尔滨工程大学, 2022.
[12] 贺玉海, 朱文超, 凌伟健. 柴油机喷油控制用电磁阀的温度场仿真与优化[J]. 舰船科学技术, 2019, 41(1): 96-101.
HE Y H, ZHU W C, LING W J. Simulation analysis and optimization of high speed solenoid valve in temperature field[J]. Ship Science and Technology, 2019, 41(1): 96-101.