近年来,天然气作为高效、清洁的能源受到各国重视,作为海上天然气运输的重要设备,液化天然气船(LNG 船)的烟流场是多年来研究者们所热衷的课题之一。为了能够掌握船舶周围烟流场的变化规律,为船上的工作人员提供规范的、具有安全性的作业规范。本文针对某一大型LNG船的烟流排放情况进行数值仿真分析,分析不同风向、风速及航速对船舶烟流排放轨迹及密度的影响规律,同时通过调整船体烟囱的高度对其进行优化,以进一步探究烟囱高度对烟流轨迹的影响规律,寻找适合的烟囱高度以减小烟流在船体上方的堆积。
In recent years, natural gas as an efficient and clean energy has been paid attention to by all countries. As an important equipment for Marine natural gas transportation, the smoke flow field of liquefied natural gas (LNG) carrier has been one of the topics that researchers have been keen on for many years. The purpose is to master the changing law of smoke flow field around the ship, and to provide standardized and safe operating norms for the staff on board. In this paper, the smoke emission of a large LNG ship is simulated and analyzed, and the influence of different wind direction, wind speed and speed on the smoke emission trajectory and density is analyzed. Finally, according to the numerical simulation results, the basic parameters of the chimney (chimney height) are optimized to reduce the accumulation of smoke on the upper deck of the hull.
2025,47(22): 10-15 收稿日期:2024-11-26
DOI:10.3404/j.issn.1672-7649.2025.22.002
分类号:U661.1
基金项目:工信部高技术船舶科研项目(CBG3N21-1-1)
作者简介:孙聪(1988 – ),男,博士,副教授,研究方向为船舶推进性能
参考文献:
[1] 胡毅. 大型LNG船水动力分析及系泊计算[D]. 武汉: 华中科技大学, 2012.
[2] TOSCANO D, MURENA F. Atmospheric ship emissions in ports: A review. Correlation with data of ship traffic [J]. Atmospheric Environment: X, 2019, 4(2): 17–19.
[3] 张佳佳, 付云鹏, 叶正华等. 舰船动力系统排烟对甲板上方空间温度场影响的数值分析[J]. 中国舰船研究, 2018, 13(5): 85-90.
ZHANG J J, FU Y P, YE Z H, et al. Numerical analysis of the impact of ship power system exhaust on the temperature field above the deck space[J]. China Ship Research, 2018, 13(5): 85-90.
[4] 沈志恒. 环境因素对海洋平台上烟气流动及传热特性影响的研究[J]. 中国海洋平台, 2012, 27(6): 46-50.
SHEN Z H. Study on the influence of environmental factors on the flow and heat transfer characteristics of flue gas on offshore platforms[J]. China Offshore Platform, 2012, 27(6): 46-50.
[5] DOOLEY G, CARRICA PM, BUCHHOLZ JH, et al. , Ship airwakes in waves and motions and effects on helicopter operation[J]. Computers and Fluids, 2020, 208(1): 1–5.
[6] 袁书生, 曾亮, 邹强. 烟囱热排烟对舰船甲板风下洗影响的大涡模拟[J]. 舰船科学技术, 2016, 38(21): 34-38.
YUAN S S, ZENG L, ZOU Q. Large eddy simulation of the impact of chimney hot exhaust on the windward wash of ship deck[J]. Ship Science and Technology, 2016, 38(21): 34-38.
[7] 刘学. 节能减排大背景下的船舶推进系统的能耗控制研究[J]. 中国水运, 2016(6): 63-65.
LIU X. Research on energy consumption control of ship propulsion system under the background of energy conservation and emission reduction[J]. China Water Transport, 2016(6): 63-65.
[8] 郁鹏飞. 基于节能减排要求的LNG动力船舶推广研究[D]. 上海: 上海交通大学, 2015.
[9] 黄少雄, 窦培林, 温海涛. 游步甲板区域烟雾扩散特性数值模拟[J]. 造船技术, 2019(1): 25-31.
HUANG S X, DOU P L, WEN H T. Numerical simulation of smoke diffusion characteristics in the walkway deck area[J]. Shipbuilding Technology, 2019(1): 25-31.
[10] OVERCAMP T J. A review of the conditions leading to downwash in physical modeling experiments[J]. 2001, 35(20): 3503-3508.
[11] 田远鑫. 烟气对舰船飞行甲板气流场影响的研究[D]. 大连: 大连海事大学, 2023.
[12] 黄少雄. 大型邮轮游步甲板区域烟流场数值模拟分析[D]. 镇江: 江苏科技大学, 2018.
[13] 陆超, 姜治芳, 王涛. 利用缩比模型CFD数值模拟计算舰船舰面空气流场相似准数的影响探讨[J]. 中国舰船研究, 2008, 3(6): 45-48.
LU C, JIANG Z F, WANG T. Discussion on the influence of similarity criteria of ship deck airflow field using scaled model CFD numerical simulation[J]. China Ship Research, 2008, 3(6): 45-48.
[14] 吕红. 舰船周围气流场数值模拟方法及分布规律的研究[D]. 哈尔滨: 哈尔滨工程大学, 2008.
[15] 王魁涛. 海上平台高温烟气扩散数值模拟分析[J]. 船海工程, 2015, 44(3): 95-99.
WANG K T. Numerical simulation and analysis of high-temperature flue gas diffusion on offshore platforms[J]. Ship and Ocean Engineering, 2015, 44(3): 95-99.
[16] 何光伟. 基于空气动力学的极地重载甲板运输船烟囱的改进设计[J]. 广船科技, 2018, 38(3): 1-4.
HE G W. Aerodynamic-based improvement design of chimneys for polar heavy load deck transport ships[J]. Guangzhou Shipbuilding Science and Technology, 2018, 38(3): 1-4.
[17] 蒋武杰, 张维毅, 徐昌, 等. 船舶高温烟气扩散数值模拟方法[J]. 船舶工程, 2021, 43(4): 77-81+127.
JIANG W J, ZHANG W Y, XU C, et al. Numerical simulation method of high-temperature flue gas diffusion on ships[J]. Ship Engineering, 2021, 43(4): 77-81+127.